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ABSTRACT: We report on enhancing crystallization and heat
resistance of poly(L-lactic acid) (PLLA) by D-sorbitol as a small
molecule nucleating agent via melt blending. During the reheating
process, the cold crystallization disappeared and the crystallinity of
nucleated PLLA exceeded 50%. The heat deflection temperature of
PLLA was elevated from 56 to 132 °C by simply increasing the
mold temperature (90 °C) without an additional annealing
treatment. We also observed the polymorphic crystals of PLLA
during melt crystallization, i.e., the coexistence of hexagonal and
lenticular crystals, along with their various geometrical aggregates
in addition to plenty of conventional spherulites. On the basis of
the fact that the nonisothermal crystallization temperature of PLLA
(110 °C at a cooling rate of 10 °C/min) was higher than the melting point of D-sorbitol (about 93 °C), we speculated that D-sorbitol
promoted the crystallization of PLLA through a homogeneous nucleation mechanism.

Over the past two decades, poly(lactic acid) or polylactide
(PLA) has become one of the most massive

commercially produced and consumed biodegradable poly-
mers,1 which was extensively applied in many fields, such as
disposable products,2 biomedical materials,3,4 food packaging,5

automotive parts,6 and adhesives.7 The annual consumption of
PLA worldwide exceeds 200 000 t, and production capacity
under planning is close to one million tons. The commercial
PLA is mainly poly(L-lactic acid) (PLLA), in which the D-lactic
acid content is usually less than 6%, otherwise PLA will not
crystallize.
PLA has the potential to replace conventional plastics by

virtue of its favorable biodegradability, biocompatibility, and
mechanical properties. However, its consumption and
application are still far behind those of conventional plastics,
largely because the slow crystallization rate and low
crystallinity make it unsuitable for blow molding. In addition,
the brittleness,8 low elongation at break,9 and especially the
poor heat resistance not only limit its application in the fields
requiring high heat resistance, such as engineering plastics and
boxes for hot foods, but also trouble the academia and industry
for many years. Therefore, improving the crystallization and
heat resistance is crucial for expanding the application of
PLA.9−12

The heat resistance is closely related to the crystallization
behavior and crystallinity of polymers. One of the most
effective approaches to obtaining high crystallinity for PLA
achieves in the formation of stereocomplex crystal (SC) by
equimolarly mixing PLLA and poly(D-lactic acid) (PDLA).
The melting point of SC is up to 220−230 °C, and the heat

resistance is pronouncedly improved. However, the molecular
weight beyond a threshold hinders the formation of SC.
Examples of other concerns include the high cost of PDLA,
especially at a relatively large dosage (isomolar), and the
unsuitability of melt processing for the formation of SC. In
view of these problems, researchers attempted the use of SC as
a nucleating agent and jointly improved the crystallization rate
and tensile strength of PLA.13−15 Nevertheless, once the
processing temperature exceeded the melting point of SC, the
stereocomplex structure and nucleation would be destroyed
and could not be restored.16−18 Some other approaches have
also been explored to improve the heat resistance of PLA; for
instance, copolymerization,19,20 blending,21,22 nano23 or fiber
filling,24 and improving crystallinity25,26 all have been reported.
The higher content of introduced components via copoly-
merization, blending, and filling inevitably deteriorates the
degradation tendency and limits the application of PLA in the
fields with strict health and biosafety requirements. Moreover,
the heat deflection temperature (HDT) of the products is still
less than 100 °C, sometimes, the approaches are accompanied
by the decline of mechanical properties. Thus, improving the
crystallinity by regulating the crystallization behavior of PLA is
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considered as the promising method to solve the heat
resistance defect.
In this regard, extensive efforts have been made in recent

years focusing on regulating the crystallization behavior of PLA
by adding a nucleating agent. The inorganic nucleating agents
used for PLA include nanoparticles and nanolayered materials,
such as talc,27 sepiolite,28 modified montmorillonite,29 carbon
nanotubes,30 halloysite nanotube,31 hydroxyapatite,32 and
carbon black.33,34 These nucleating agents have shown a
remarkable nucleation effect but hardly help with increasing
the crystallinity. The reported organic nucleating agents for
PLA mainly cover amides,35−37 hydrazine/hydrazide,38−45

phenylmalonate,46 aromatic sulfonate derivatives,47 phenyl
phosphate,48−50 biuret,51 phthalimide,52 zinc lactate,53 zinc
citrate complex,54 PDLA,55 branched PLA,56 amino acids, and
poly(amino acids).57 Some biobased materials and their
derivatives such as orotic acid,58 biobased carbon,59 cyclo-
dextrin,60 xylanate,61 ramie fiber,62 wood powder,63 cyclo-
hexanol,64 cellulose nanocrystalline,65 and chemically modified
thermoplastic starch,66 were also investigated. Although these
nucleating agents were found to improve the crystallization
rate and nonisothermal crystallization temperature of PLA to
some extent, the achieved crystallinity hardly exceeded 40%,
and cold crystallization would occur in the reheating process.
The limited improvement in HDT, i.e., from about 55 °C to
60−70 °C, has little significance for practical application.67

Hence, it is necessary to supplement the nucleating agents with

further annealing treatment to increase the crystallinity of
PLA.45,68−71 Studies found that the annealing treatment could
raise the HDT over 120 °C.72,73 However, the additional
annealing treatment complicated the production process and
dramatically reduced production efficiency. It is imperative to
find a nucleating agent that can adapt to the conventional melt
processing and significantly improve the heat resistance of PLA
without annealing treatment.
Herein, we report a seminal approach for dramatically

improving the crystallization of PLLA with a unique
mechanism by incorporting D-sorbitol (DS) via melt blending,
which is capable of significantly increasing both the crystallinity
and heat resistance of PLLA.
The nonisothermal crystallization behavior of PLLA was

investigated by differential scanning calorimetry (DSC), and
the thermograms of neat and nucleated PLLA during
programmed cooling and reheating processes are shown in
Figure 1. The crystallization parameters derived from DSC
data are listed in Table 1, including the peak temperature of
(cold) crystallization, Tc (Tcc), the exothermic enthalpy of
crystallization (ΔHc), the difference between the onset
crystallization temperature (Tonset) and Tc, the glass transition
temperature (Tg), and the melting temperature of crystals
(Tm). The crystallinities during the cooling process (Xc) and
reheating process (Xc*) are calculated according to eqs 1 and 2:

Figure 1. DSC curves of PLLA/DS for cooling (a) and reheating (b) processes under the same rate of 10 °C/min.

Table 1. Nonisothermal Crystallization Parameters of PLLA

cooling process reheating process

samples Tc (°C) ΔHc (J/g) Xc (%) Tonset − Tc(°C) Tg (°C) Tm (°C) ΔHm (J/g) Tcc (°C) ΔHcc (J/g) Xc* (%)

neat PLLA 94.6 7.8 8.3 16.4 60.6 176.6 42.2 95.6 18.5 25.3
PLLA/0.1%DS 94.7 10.7 11.4 16.0 60.8 176.1 44.7 94.8 18.1 28.5
PLLA/0.3%DS 101.2 34.8 37.3 10.0 63.8 176.2 44.5 47.7
PLLA/0.5%DS 108.5 42.2 45.3 10.3 63.3 177.5 46.2 49.5
PLLA/0.7%DS 110.2 45.8 49.2 10.2 63.8 177.5 47.8 51.4
PLLA/1.0%DS 106.7 36.2 39.0 10.3 63.7 176.4 45.9 49.5
PLLA/2.0%DS 95.2 8.0 8.8 17.6 61.8 175.4 36.5 95.0 17.9 20.3
PLLA/3.0%DS 94.0 8.5 9.3 17.0 60.9 175.4 38.8 94.5 15.7 25.4
PLLA/5.0%DS 92.7 4.0 4.5 17.0 61.5 176.0 37.2 95.0 19.2 20.2
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where ΔHm
0 is the melting enthalpy of 100% crystallized PLLA

(93.7 J/g),74 φ is the mass fraction of the nucleating agent,
ΔHm is the melting enthalpy, ΔHc is the enthalpy of
crystallization, and ΔHcc is the exothermic enthalpy of cold
crystallization. The absolute values of enthalpies are used.
The neat PLLA and PLLA/0.1%DS show similar flat curves.

The exothermic peak of crystallization appears only as a slight
bulge between 80 and 110 °C during the programmed cooling
process, implying the low crystallization capacity (Figure 1a).
The cold crystallization peaks around 95 °C are observed for
both in the reheating process (Figure 1b), meaning that the
low quality of DS (0.1%) does not alter the crystallization
behavior of PLLA.
A further increase in the DS content brings up the distinct

emergence of the crystallization peaks and the rapid shift of Tc
to a high temperature in the cooling process with a maximum
of 110 °C at 0.7% DS addition, corresponding to an increase of
16 °C compared with that of neat PLLA. This change suggests

that DS, as a nucleating agent, significantly promotes the
crystallization of PLLA. With further raising the DS dosage to
1%, the increase in Tc begins to decline, and the crystallization
peaks disappear at higher DS dosage (2% to 5%), which can be
ascribed to the decreased nucleation effect of DS caused by
uneven dispersion. As a weathervane for the overall rate of
crystallization, the smaller the value of Tonset − Tc is, the faster
the crystallization completes. This value is about 10 °C when
the DS dosage ranged from 0.3% to 1%, which is lower than
that of neat PLLA and PLLA/0.1%DS (16 °C). This effect
further proves that the crystallization of PLLA is effectively
improved.
Nucleating agents are mainly used to increase the

crystallization rate, but not necessarily helpful to the
crystallinity at the same time. For the samples with DS dosage
from 0.3% to 1%, the cold crystallization is found to be absent
and the crystallinities are significantly higher than those of
other samples. The presence of bimodal melting peaks at DS
dosage of 0.5% to 1.0% indicates the coexistence of less-
ordered α′ and ordered α crystal forms. The endothermic
peaks at the low-temperature side correspond to the α′ to α
phase transition, while the peaks at the high-temperature side
ascribe to the melting of α crystal form.75 Both of the
crystallinities of the cooling and reheating processes (Table 1)

Figure 2. Evolution of crystal morphology of Neat PLLA and PLLA/0.7%DS with a cooling rate of 10 °C/min at 130, 120, 110, 100, and 30 °C,
respectively.

Figure 3. SEM photomicrographs of nonisothermal crystalline samples of neat PLLA (a)−(d) and PLLA/0.7%DS (e)−(h) etched by the solution
of sodium hydroxide at 25 °C for 12 h.
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show a similar trend as the crystallization temperature and the
values of Xc* are always higher than Xc. The maximum of
crystallinity appears at the DS dosage of 0.7%; meanwhile, the
difference between Xc* (51%) and Xc (49%) is minimal,
indicating a more perfect crystallization. Thus, there is no
doubt that DS plays a significant role in nucleating and
dramatically raises the crystallinity without a further annealing
treatment, which is conducive to improve the heat resistance of
PLLA.
The activation energy barrier (ΔE) for the nonisothermal

crystallization of PLLA melt is calculated by the Kissinger
equation.76 The ΔΕ dramatically decreases from 30.8 kJ/mol
for neat PLLA to 11.3 kJ/mol for the nucleated PLLA,
indicating that the nucleated PLLA is easier to crystallize
(Figure S1).
The real-time polarized optical microscopy (POM)

observation was adopted to monitor the evolution of
nonisothermal crystallization (Figure 2). The spherulites of
neat PLLA began to emerge at 120 °C, whereas the initial
crystallization of nucleated PLLA occurred at 130 °C. It is
noteworthy that PLLA/0.7%DS presents a much higher
nucleation density at the same temperature (i.e., 110 °C),
and thus the spherulite size decreases from 100 to 200 μm for
neat PLLA to approximately 50−100 μm for nucleated PLLA
(Figure 2e,j).
We also observed the polymorphic crystals of PLLA, which

differed from the reported simplex spherulite. To obtain the
fine structure of PLLA crystals, programmedly cooled samples
were etched using a water/methanol solution of sodium
hydroxide for scanning electron microscopy (SEM) observa-
tion. The SEM images of the PLLA crystal morphology are
shown in Figure 3. A large number of spherulite skeletons with
central radiating shape are found on the surface of both neat
and nucleated PLLA samples (Figure 3a,e,f). Besides, some
hexagonal crystals of 5−10 μm (Figure 3b,f) and piles of
orthohexagonal lenticular crystals of 3−7 μm are also observed.
Except for the solitary existence of lenticular crystal, there are
also complex geometric shapes that are composed of three or
more lenticular crystals, such as spherical (Figure 3c,d) or
shish-kebab conglomerates (Figure 3h). This phenomenon is
found in both neat and nucleated samples, indicating that DS
does not change the fundamental mechanism of PLLA crystal
growth. The lenticular crystal has the precisely same Raman
spectrum as that of PLLA, and the only difference of
hexagonal-like crystals is that the original peak at 300 cm−1

shifts to a lower wavenumber (280 cm−1), as shown in Figure
S2. It is probably due to the more orderly and compacted
molecular stack in the hexagonal-like crystals, which offers
crystals good chemical stability, and also explains why their
surface remains smooth and regular shapes similar to that of
single crystals. Raman spectroscopy confirms that both the
lenticular and hexagonal-like crystals are PLLA, ruling out the
possibility that these crystals with particular morphology are
DS or impurity. It is found for the first time that the
nonisothermal melt-grown crystals of PLLA have other crystal
morphologies besides spherulites, and this polymorphous
phenomenon can only be observed in the isothermal
solution-grown process.77,78

Different from the programmed cooling in DSC analysis, the
molding conditions of PLLA, such as mold temperature and
pressure holding time, directly determine the cooling rate and
further affect the crystallinity and heat resistance of the
products. To reveal the influence of molding conditions on the

heat resistance of the products, two strategies were used. One
is to ensure a short molding cycle (maintaining the pressure for
20 s), and the other is to adjust the cooling rate by reducing
the temperature difference between the melt and the mold, i.e.,
increasing the mold temperature. In actual massive production,
once the mold temperature is higher than 90 °C, the sample is
not easy to solidify in a timely fashion, which affects the mold
release and production efficiency. Thus, the highest mold
temperature was set as 90 °C. The DSC curves, X-ray
diffraction patterns, HDT, and crystallinity of injection
molding samples under different mold temperatures are
shown in Figures S3 and S4 and Table 2. The DSC curves

of the injected samples show a single melting peak belonging
to the α-form crystal, which means that only one crystal form
exists in the injected samples. Among those with the DS
dosage of 0.3%−1%, only three samples molded at 90 °C show
an HDT exceeding 132 °C, indicating that the mold
temperature of 90 °C and DS dosage higher than 0.3% are
the optimal conditions for good heat resistance. It should be
noted that the HDT of several samples was not improved even
though their crystallinity exceeded 50% at the mold temper-
atures of 80 and 90 °C, implying that the difference of the
cooling rate results in quite different crystalline properties.
This phenomenon involves a complex, synergistic promoting
effect of the nucleating agent, cooling rate, and the melt shear
on PLLA chains during processing. Moreover, the increase of
molecular weights and the strengthened entanglement
definitely hinder the crystallization, while the melt shear
should facilitate the disentanglement for crystallization.
Therefore, the evolution of crystal morphology and crystal-
linity under different molecular weights and melt shear
conditions, as well as their further influence on HDT are of
growing concern.
The nucleating agents used for biodegradable polyesters are

largely based on heterogeneous nucleation. During the cooling
process, the nucleating agents either remain in the solid form
(their melting points are higher than the processing temper-
ature, such as talc,79 cyclodextrin,80 phthalimide,81 and oriotic

Table 2. Crystallization Parameters and HDT of the
Injection Molded PLLA

mold temp
(°C)

D-sorbitol content
(%)

Tg
(°C)

Tm
(°C)

Xc*
(%)

HDT
(°C)

50 0 64.9 177.0 23.4 57
0.1 66.2 177.1 22. 6 56
0.3 65.5 177.1 19.8 56
0.5 65.8 176.3 19.2 56
0.7 65.3 176.3 23.5 56
1.0 65.3 176.1 19.4 56

80 0 65.7 176.2 29.9 56
0.1 63.3 176.5 47.4 56
0.3 67.4 176.2 49.7 61
0.5 64.7 176.6 53.1 62
0.7 66.9 176.2 53.7 73
1.0 67.2 176.4 52.4 59

90 0 60.6 176.4 19.4 57
0.1 66.5 177.6 44.8 60
0.3 67.6 177.1 54.6 64
0.5 67.4 176.9 51.1 132
0.7 66.9 176.7 54.7 135
1.0 67.0 176.7 55.6 132
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acid58) or solidify earlier than the polymer melts (the melting
point or the glass transition temperature of the nucleating
agents are between the crystallization temperature of the
polymer and the processing temperature46,82).
Herein, D-sorbitol with a melting point around 93 °C was

used as the nucleating agent to promote the crystallization of
PLLA, and the nonisothermal crystallization temperature of
nucleated PLLA is found to be 110 °C; thus, D-sorbitol and
PLLA are both in the molten state during crystallization and D-
sorbitol easily disperses at the molecular level in the PLLA
matrix. This molten condition indicates that D-sorbitol
nucleation is realized via a novel approach, i.e., homogeneous
nucleation. A hypothetical nucleating mechanism of D-sorbitol
is shown in Figure 4.

The H-bonding interaction between the hydroxyl group of
D-sorbitol and the carbonyl group of PLLA may effectively
induce the twisting and folding of PLLA chain segments, to
promote the orderly stacking of PLLA chains, which favors
overall nucleation and crystal growth.
In summary, molten D-sorbitol, as a small molecule

nucleating agent, effectively facilitated the homogeneous
nucleation of PLLA, which was quite different from the
conventional heterogeneous nucleation. The overall crystal-
lization rate and the crystallinity of PLLA were significantly
improved. Under conventional processing conditions, the
HDT of PLLA could exceed 132 °C by simply increasing
the mold temperature without an additional annealing
treatment. To our knowledge, this is the first report on the
polymorphous phenomenon of PLLA, i.e., the coexistence of
three crystal morphologies, and is expected to provide a new
internal clue to improving the crystallization ability of
polylactic acid.
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