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As global warming intensifies, people exposed to outdoor en-
vironments are more at risk of illnesses related to excessive 
heat stress (1, 2). Personal thermal management (PTM), a 
technology that controls the microclimate of the human 
body, can achieve thermal comfort with high efficiency (3). 
However, the key issues of energy consuming and bulky na-
ture of current PTM design have not been solved yet (4–7). 
Radiative cooling, which radiates heat directly to outer space 
through the atmospheric transparent spectral window 
(ATSW, λ ~8 to 13 μm) (8, 9), is a promising cooling method 
for overcoming these obstacles. Methods that harness nano-
photonic structures like multilayer photonic structures (9, 
10), metamaterials (11, 12), and random medium (13–20) have 
successfully yielded daytime radiative cooling devices and 
systems by simultaneously introducing solar irradiance rejec-
tion and enhancing the emitted thermal radiation. However, 
most radiative cooling structures (thin-films, coatings, paints, 
etc.) still result in weak air/water permeability and inade-
quate wearability properties that limit these materials from 
being directly applied to PTM systems (21). Thus, as the dom-
inant medium that protects the skin from the external 

environment, clothing might be the perfect candidate to be 
implemented with daytime radiative cooling functionality. 

Researchers have tested various types of mid-infrared 
(MIR)–transparent radiative cooling textiles (22–26). But, to 
maintain enough MIR transmittance, the thickness of the 
MIR-transparent structure is highly restricted to less than 
~150 μm. Solar heating blockage and structural toughness be-
come challenging at this thickness level. In contrast, the per-
formance of MIR-emissive textiles does not depend on the 
spectrum of the underlying surface, thus relaxes the thick-
ness restrictions. However, only few studies on MIR-emissive 
radiative cooling textiles or fibers have been proposed for 
PTM (27, 28). 

We designed a multilayer metafabric knitted with compo-
site microfibers, which incorporates hierarchically designed 
random metamaterial structures to directly integrate radia-
tive cooling technology for PTM applications. The hierar-
chical-morphology design mechanism directly provides an 
extended spectroscopic response that spans two orders of 
magnitude in wavelength (0.3 to 25 μm) and enables the met-
afabric to resonantly reject the solar power and strongly emit 
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Incorporating passive radiative cooling structures into personal thermal management technologies could 
effectively defend human against the intensifying global climate change. We show that large scale woven 
metafabrics can provide high emissivity (94.5%) in the atmospheric window and reflectivity (92.4%) in the 
solar spectrum because the hierarchical-morphology design of the randomly dispersed scatterers 
throughout the metafabric. Through scalable industrial textile manufacturing routes, our metafabrics 
exhibit excellent mechanical strength, waterproofness, and breathability for commercial clothing while 
maintaining efficient radiative cooling ability. Practical application tests demonstrated the human body 
covered by our metafabric could be cooled down ~4.8°C lower than that covered by commercial cotton 
fabric. The cost-effectiveness and high-performance of our metafabrics present great advantages for 
intelligent garments, smart textiles, and passive radiative cooling applications. on July 8, 2021
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in the MIR range (Fig. 1, A and B). The multilayer metafabric 
consists of a titanium oxide-polylactic acid (TiO2-PLA) com-
posite woven textile laminated with a thin polytetrafluoro-
ethylene (PTFE) layer. The laminated top-layer is designed as 
a 50-μm-thick PTFE clothing film that is commercially avail-
able and widely used in clothing industries. The porous com-
posite contains nanobeads of 200 to 1000 nm in size and 
nanofibers with length of several micron and width less than 
200 nm (fig. S1). The composite strongly reflects ultraviolet 
(UV) light from the incoming radiation before it reaches the 
metatextile layer. As high-refractive-index scatterers, TiO2 na-
noparticles with size distributions between 200 and 1600 nm 
can utilize the collective effect of multiple Mie resonances 
(29, 30) and produce scattering peaks required to cover the 
entire visible-near-infrared (VIS-NIR) band with high effi-
ciency. 

Selective emitters are desirable for radiative cooling ap-
plications when the working temperature is below ambient. 
For above ambient temperature scenarios, effective emission 
in the full MIR band can be useful. Therefore, PLA microfi-
bers, which possess C=O (1825 to 1725 cm−1), -CH3 (1454.49 
cm−1), -CH (1382 to 1300 cm−1), C-O (1042 to 1267 cm−1), and 
C-C (867.67 cm−1) bonds (31), were selected to provide rich 
emittance in the MIR waveband (fig. S2). Also, PLA fibers ex-
hibit excellent solar transmittance, high moisture absorption 
properties, as well as remarkable biodegradability (32). The 
diameter of the fibers is designed to be ~30 μm for enhanced 
MIR absorption/emissivity (fig. S3), simultaneously exhibit-
ing multiple scattering for increased absorption (33), and a 
rugged textile surface for gradient refractive index antireflec-
tion (14, 34). 

We further optimized the radiative cooling performance 
using a numerical model based on Lorenz-Mie theory and 
Monte Carlo simulations (29, 35, 36). The optical properties 
described by the pathlength-dependent electromagnetic scat-
tering process between incoming radiation and metafabric 
requires more structure parameters to be rigorously deter-
mined to improve the radiative cooling capability of the met-
afabric. We selected nanoparticles with a log-normal 
distribution (μ = 6.2, σ2 = 0.2) and peak diameters of 400 nm 
(fig. S4) because they induced the best solar rejection perfor-
mance enhancement of the fabric (Fig. 1C). Such a wide dis-
tribution of nanoparticles, when combined with PTFE 
nanobeads, provides broad-spectrum scattering and reflectiv-
ity across the UV-VIS-NIR band (Fig. 1D). We numerically 
evaluated the radiative cooling performance of the metafab-
ric using a steady-state heat transfer model of clothed human 
skin with a skin temperature of 34°C and an ambient tem-
perature of 22°C (36). We observed a net cooling power plat-
eau corresponding to the thickness range of 400 to 600 μm, 
with the most efficient cooling behavior occurring at approx-
imately 500 μm (Fig. 1E). 

Modern fabrication technologies enabled great flexibility 
for the scalable manufacture of our metafabrics by realizing 
the hierarchical-morphology design at the sub-fiber level 
(Fig. 2A) (36). The metafibers (Fig. 2B) exhibited superior ten-
sile properties with an elongation of 29.5% and a breakage 
strength of 1.886 cN/dtex (Fig. 2C), which are flexible and 
strong enough to be stitched and embroidered via a commer-
cial sewing machine (Fig. 2D and movie S1). This compatibil-
ity with commercial sewing techniques allows the cooling 
metafibers to be applied to any clothing type and textile pat-
tern. Mechanical tests showed that our metafabric (Fig. 2E 
and movie S2) can endure a tensile force of ~482 N and an 
elongation of ~20%, which are comparable to the mechanical 
properties of other commercial fabrics (Fig. 2F). The hydro-
phobic top surface of the metafabric exhibits excellent water-
proofness (Fig. 2G), while the metafabric still maintains a 
certain degree of air permeability. When sandwiched be-
tween air and water environments, our metafabric exhibits 
continuous bubble transmittance and tight waterproofness 
that facilitates conventional heat exchange mechanisms for 
favorable wearability (Fig. 2H). The durability and washing 
resistance of our metafabric was also validated and suggests 
our technology is readily compatible with commercial appli-
cations (fig. S5) (36). Benefitting from our hierarchical-mor-
phology design, the fabric shows a broadband reflectivity of 
92.4% in the solar radiation region (0.3 to 2.5 μm) and an 
average emissivity of 94.5% across the ATSW (Fig. 2I). The 
broadband of high emissivity between 4 and 25 μm can pro-
vide additional cooling power for the working temperatures 
of our metafabric are higher than the ambient when used in 
PTM scenarios (8). 

We demonstrated the outdoor radiative cooling perfor-
mance of our metafabric by direct thermal measurements un-
der clear sky conditions in Guangzhou, China (Fig. 3, A and 
B) (36). The temperature of each fabric sample was moni-
tored by 3 K-type thermocouples taped on the copper plate to 
ensure the accuracy and uniformity of thermal measure-
ments (Fig. 3C). Throughout a continuous 24-hour measure-
ment period, the metafabric consistently maintained a 
temperature below the ambient temperature (Fig. 3D). The 
minimum temperature difference was ~2°C, which occurred 
within half an hour of the peak solar irradiance. Further-
more, we tested the radiative cooling performance of our met-
afabric on a human skin simulator (Fig. 3E) (36). Under peak 
solar irradiance between 11:00 and 15:00, the temperature of 
the metafabric was approximately 5.0°, 6.8°, 7.0°, 5.8°, and 
10.2°C lower than that of the cotton, spandex, chiffon, linen, 
and bare skin simulators, respectively (Fig. 3F). 

To validate the cooling performance of our metafabric 
with scalable, wearable features in pragmatic scenarios, we 
composed a homemade vest by sewing a commercial cotton 
fabric and a metafabric together. A volunteer wearing that 
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vest reclined under direct sunlight for an hour while we mon-
itored the thermal properties of the vest and the volunteer 
(Fig. 4A). Thermal camera (Fluke Ti400) showed a large tem-
perature difference between the two sides of the vest (34.4° 
and 31.0°C). Thermocouples adhered under the vest also in-
dicated a temperature difference of ~4.8°C between the parts 
of the body that were covered by different fabrics (Fig. 4B). A 
similar test for the radiative cooling vest was performed in 
Sipsongpanna, China, for repeatability. During the half-hour 
measurement process, the surface of each half of the vest 
gradually exhibited a notable temperature difference (Fig. 4C 
and movie S3). Amazingly, the two halves of the body showed 
a distinct temperature difference of more than 3°C right after 
the vest was removed. In addition, we tested the cooling per-
formance of the metafabric with three car models covered by 
a commercial vehicle cover (36), our metafabric, and nothing, 
respectively (Fig. 4A). During a 90-min experiment, the max-
imum interior temperature of the car model covered by the 
metafabric was ~30° and ~27°C cooler than that of the mod-
els with no cover and with a vehicle cover, respectively (Fig. 
4D). These results show the great potential for commercial 
applications in various complex scenarios, such as smart tex-
tiles, sunshade products, logistics transportation, etc. (fig. 
S6). 

The metafabric exhibits efficient radiative cooling perfor-
mance and provides necessary breathability and wearing 
comfort for PTM. Compared with passive cooling routes like 
films or paints, the woven structure enables metafabric to 
easily accommodate complex deformations (bending, stretch-
ing and twisting), which leads to versatile compatibility. 
Through embroidery, cutting and sewing, the metafabric can 
be integrated into various products for different scenarios, 
such as clothing, tents, car covers, curtains and awnings. Fur-
ther optimization and exploration of the fiber structural fea-
tures are expected to improve the cooling efficiency by the 
combined effect of both radiative cooling and perspiration 
evaporation (37). Although we have not yet explored the color 
compatible radiative cooling and cooling power modulation 
of the metafabric, based on the idea of hierarchical-morphol-
ogy design, applying a fourth level dyeing layer and adopting 
asymmetrical photonics structures may address above chal-
lenges. 
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Fig. 1. Proposed structure and simulated properties of the metafabric. (A) Schematic of a metafabric for 
daytime radiative cooling. The blue, green and red dashed boxes highlight the three-level hierarchical 
structure responding to the UV, VIS-NIR and MIR bands, respectively. The insets show the calculated 
scattering fields of 300 nm and 550 nm light by a 500 nm PTFE particle and a 400 nm TiO2 particle, 
respectively. Scale bar, 400 nm. (B) Calculated scattering and absorption efficiencies for particles with 
different sizes encapsulated in the metafabric. PTFE particles, TiO2 particles and PLA fibers demonstrate 
strong scattering/absorption of UV light, VIS-NIR light and MIR light, respectively. (C) Calculated solar 
reflectance (0.3 to 2.5 μm) of the metafabric with different thicknesses and TiO2 particle sizes under the 
same doping concentration (15% volume fraction). For a consistent thickness, the log-normal distribution of 
TiO2 particles with a peak diameter of 400 nm (μ = 6.2, σ2 = 0.2) can provide the highest solar reflectance. 
(D) Upper, scattering coefficients of PTFE and TiO2 nanoparticles with optimized size distributions and 
volume fractions of 15%. Lower, measured solar radiation band reflectivity curves of metafabric, metatextile, 
and PTFE clothing films. (E) Calculated net cooling power of the metafabric vs. fabric thickness using 
different heat convection coefficients with a skin temperature of 34°C and an ambient temperature of 22°C. 
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Fig. 2. Manufacture and characterization of the metafabric. (A) The fabrication process of the metafabric. 
(B) Photograph of the fabricated metafibers. Scale bar, 10 cm. The inset shows an optical micrograph of 
metafibers with diameters of ~30 μm. Scale bar, 500 μm. (C) Mechanical strength tests of the fiber strength 
versus elongation. (D) Photograph of metafibers embroidered with the letters “THERMAL DYNAMICS” on 
denim. Scale bar, 20 cm. (E) Photograph of the metafabric (0.3 m by 15 m). Scale bar, 20 cm. (F) A tensile 
strength test of the metafabric, cotton, spandex, chiffon, linen, and sun-protective clothing #1 (SP#1).  
(G) Morphologies of the upper and lower surfaces of the metafabric. The upper surface is hydrophobic, and the 
lower surface is hydrophilic, as shown in the insets contact angle tests. Scale bar, 1 mm. (H) Demonstration of 
the waterproofness and breathability of the metafabric. Scale bar, 5 cm. (I) Measured reflectivity and emissivity 
spectra of the metafabric (0.3 to 25 μm). 
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Fig. 3. Direct thermal analysis to determine the metafabric cooling performance.  
(A) Schematic and (B) photo of the thermal measurement system used to characterize the 
radiative cooling performance. (C) Schematic and photo of the sample structure for the test. 
Scale bar, 5 cm. (D) A 24-hour continuous temperature measurement of the subambient cooling 
performance test in Guangzhou, China (23°5′32′′N, 113°23′45′′E, December 5-6, 2020).  
(E) Schematic of the device used for the skin simulator cooling test and photographs of the fabric 
samples used in the test. Scale bars, 10 cm. (F) Temperature difference of skin simulators under 
different fabric samples in same location (November 28, 2020). 
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Fig. 4. Practical characterization of the metafabric with sun exposure.  
(A) Schematic of the metafabric cooling tests on the human body and model cars. (B) 
Temperature tracking for skin under different fabrics in direct sunlight in Guangzhou, China 
(23°5′32′′N, 113°23′45′′E, December 7, 2020). The insets show photographs and thermal 
images of the volunteer wearing a homemade vest. (C) Infrared images of the volunteer under 
direct sunlight in Sipsongpanna, China (22°10′22″N, 100°51′29″E, December 13, 2020). (D) 
Temperature test curves of three identical car models exposed to the sun. The inset shows 
photographs and IR images of the car models during the three time periods. “I” and “III” labels 
correspond to the initial and final measurements, respectively, and “II” shows a photograph of 
the whole test process. Scale bar, 10 cm. 
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