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FePO4/LiFePO4 (FP/LFP) interfacial strain, giving rise to substantial variation in interfacial energy

and lattice volume, is inevitable in the (de)lithiation process of LiFePO4, a prototype of Li ion

battery cathodes. Extensive theoretical and experimental research has been focused on the effect of

lattice strain energy on FP/LFP interface propagation orientation and cyclic stability of the

electrode. However, the essential effect of strain induced lattice distortion on Liþ transport at the

FP/LFP interface is typically overlooked. In this report, a coherent interface model is derived to

evaluate quantitatively the correlation between FP/LFP lattice distortion and Liþ conduction. The

results illustrate that the effect of lattice strain on Liþ conduction depends strongly on FP/LFP

interface orientations. Lattice strain induces a 90% decrease of Liþ conductivity in ac-plane

oriented (de)lithiation at room temperature. The opposite effect of lattice strain on delithiation and

lithiation for ab- and bc-orientations is elucidated. In addition, the effect of lattice strain tends to be

more pronounced at a lower working temperature. This study provides an efficient platform to

comprehend and manipulate Liþ conduction in the charge and discharge of lithium ion batteries,

the large-scale application of which is frequently challenged by limited in-cell ion conduction.
VC 2016 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4942849]

LiFePO4 (LFP) is a commercialized cathode material

employed frequently in electrical vehicle (EV) batteries due

to its high safety, long cyclic life, and low cost.1 However,

the material is still subject to insightful study for improve-

ment in its capacity and rate performance.2 For instance, car-

bon coating strategy has been employed to improve the poor

intrinsic electronic conductivity, and particle size reduction

and aliovalent doping have been adopted to enhance the Liþ

conductivity.3–5 Compared to the electronic conduction, the

low Liþ conductivity is still the limiting factor for the fast

kinetics of charge/discharge process.2,6,7 The rather limited

Li solubility in LiFePO4 and FePO4 (FP) suggests that (de)

lithiation in this material proceeds with a two-phase mecha-

nism, where the relative LiFePO4:FePO4 phase ratio varies

with moving phase boundary, as first proposed by Padhi

et al.,1 and elucidated further by subsequent experimental

observations.8,9 The delithiated phase FePO4 has essentially

the same structure as LiFePO4, yet with a �6% reduction in

cell volume. Such a lattice mismatch causes interfacial

strain, which impacts largely the electrochemical perform-

ance in the battery (de)lithiation of LiFePO4 as cathode. Van

der Ven et al. have illustrated the effect of coherency strains

on the thermodynamics of two-phase coexistence and the

voltage profile during Li (de)intercalation of LiFePO4.10

Tang et al. have revealed that the misfit strain energy has a

considerable influence on FP/LFP phase transformation ori-

entation and morphology.11 Through analysis of interfacial

energy and coherency strain energy, Abdellahi et al. have

shown that the preferred interface orientation for FP/LFP

phase transformation is dependent on both particle size and

particle morphology.12 Despite the aforementioned studies,

quantitative investigation into the effect of FP/LFP interfa-

cial strain induced lattice cell volume variation (DV) on Liþ

transport at FP/LFP interface is still lacking. In this study,

FP/LFP interfacial strain arising from the lattice mismatch is

investigated by building a coherent interface elastic model.

The quantitative correlations between lattice strain and lat-

tice cell volume variation and between the lattice cell vol-

ume variation and the activation energy change of Liþ

transport (DG) are both illustrated. Temperature effect on

strain induced Liþ transport is also given. Our work provides

a model to understand the Liþ transport in LiFePO4 and

other two-phase electrode materials for lithium ion batteries

(LIBs), and facilitates the optimization of LIBs with superior

rate performance.
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The propagation of FP/LFP interface through bc
plane,13–15 ac,16,17 and ab18 planes is all observed experi-

mentally. At the cathode, LiFePO4 particles of various sizes

and shapes form three dimensional Liþ conductive cross-

linked network. The (de)lithiation can proceed along a num-

ber of interface orientations including bc, ac, and ab planes

among others, as given in Fig. 1. Evaluation on the correla-

tion between the orientations of the FP/LFP interface and

Liþ diffusion is thus critical for understanding the effect of

interfacial stain on Liþ conduction. Due to the anisotropy of

Liþ diffusion preferable along [010] direction,19–21 Liþ dif-

fusion paths at typical bc-, ac-, and ab-FP/LFP interfaces are

demarked by red arrows for the delithiation path in the LFP

phase and green arrows for the lithiation path in the FP

phase. As shown in Fig. 1, Liþ diffuses along bc and ab
interfaces in bc- and ab-oriented (de)lithiation, and diffuses

across the ac interface for ac-oriented (de)lithiation. For

bc- and ab-oriented two-phase transformation, the charge

rate is dependent on the delithiation in LFP phase, whereas

the discharge rate is dependent on the lithiation in FP phase.

The (de)lithiation rate for ac-oriented two-phase transfor-

mation is dependent on Liþ conductivities of both FePO4

and LiFePO4 and limited by the smaller one.

A coherent FP/LFP interface model with lattice mis-

match, as shown in Fig. 2(a), is built to evaluate the lattice

strain and cell volume change. The detailed derivation is

depicted in the supplementary material.22 The crystallo-

graphic orientation dependent FP/LFP interfacial strain and

cell volume change are calculated with lattice constants23

and elastic constants24 of FePO4 and LiFePO4, as shown in

Table S1 in the supplementary material. DG is derived from

the plot of DG versus DV=V based on available density func-

tional theory (DFT) data.25 As shown in Fig. 2(b), DG exhib-

its a quasi-linear correlation with DV=V as the cell volume

varies in the range of 66%. The slope of DG versus DV=V is

��0.015 eV, depending on the physical nature of LiFePO4,

including the cell structure, the elastic modulus, and other

parameters impacting the interaction between transporting

Liþ and the surrounding atoms in LiFePO4. DV and DG with

respect to a specific interface exhibit opposite values for LFP

and FP phases, indicating that FP/LFP interfacial strain has

opposite impact on the delithiation of LFP phase and lithia-

tion of FP phase. DG with respect to the ab interface for

each phase is the largest, followed by those with respect to

the ac interface and the bc interface. LFP cell volume at the

bc interface increases 1.57%, and DG decreases 0.025 eV

accordingly. The LFP phase at the ab and ac interfaces expe-

riences compressive strain and increased DG of Liþ trans-

port. The cell volumes of FP at ac and ab interfaces expand

�3.51% and 5.04%, resulting in decreased DG of 0.058 eV

and 0.075 eV, respectively. The cell volume of FP at the bc
interface (FP(bc)) is compressed �1.55%, resulting in an

increased DG of 0.025 eV.

The Liþ conductivity at strained interface (rt) is corre-

lated to bulk conductivity (r0Þ by Eq. (S12) in the supple-

mentary material.22 As shown in Fig. 3, lg rt

r0
for LFP and FP

FIG. 1. Atomic models of FePO4/LiFePO4 interfaces along (a) bc plane,

(b) ac plane, and (c) ab plane. The green atoms denote Li, the pink tetrahe-

dra stand for PO4 structure and the octahedra stand for FeO6 structure. The

brown planes stand for FP/LFP interfaces. The red arrows show delithia-

tion (charge) [010] direction, whereas the green arrows show lithiation

(discharge) [010] direction.

FIG. 2. (a) Schematics of coherent inter-

faces with lattice mismatch. (b) The plot

of activation energy variation of Liþ

transport as a function of strain-induced

lattice cell volume change. The black

square dots represent DFT data from

Ref. 24. The red (green) circles denote

data points of (DV/V, DG) with error

bars for LiFePO4 (FePO4) with a specific

interface orientation. LFP(ab) stands for

the LFP phase at the ab interface.
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phases along a specific interface orientation is in value. For

instance, at 25 �C, lg rt

r0
is 1.26 for FP(ab) and is �1.27 for

LFP(ab), indicating that the delithiation Liþ conductivity

decreases to only �0.05 r0 and the lithiation Liþ conductiv-

ity increases to �18 r0. For FP(bc) and LFP(bc), lg rt

r0
is

�0.42 and 0.42, respectively. The result suggests that the bc-
delithiation Liþ conductivity increases to �2.66 r0, whereas

the bc-lithiation Liþ conductivity decreases to 0.38 r0 at

room temperature. lg rt

r0
for FP(ac) and LFP(ac) is 0.85 and

�0.98, respectively, but the Liþ conduction for the lithiation

and delithiation is dependent on the smaller rt of �0.10 r0

at room temperature since Liþ diffuses across the ac inter-

face. It is proposed that the (de)lithiation in the cathode com-

posed of LiFePO4 particles occurs along multiple interface

orientations. Depending upon the specific interface orienta-

tion, interfacial strain induces 1–2 folds of impact on Liþ con-

ductivity. Such diverse strain effects explain, to a rational

extent, the known inconsistency between the Liþ conductivity

of �10�8 cm2/s by DFT/molecular dynamics (MD) and the ex-

perimental value of �10�10 cm2/s at room temperature.7,19,20,26

The Liþ conduction of the LFP cathode is limited

largely at a low temperature or an essentially elevated tem-

perature.27,28 As shown in Fig. 3, the absolute value jlg rt

r0
j

increases for both FP and LFP phases of all three interface

orientations as temperature decreases, indicating that the

interfacial strain has more profound impact on Liþ conduc-

tivity at a lower temperature. For instance, lg rt

r0
along FP(ab)

increases from 1.12 to 1.60, and lg rt

r0
along LFP(bc)

increases from 0.38 to 0.54 as the temperature decreases

from 60 �C to �40 �C. It should be noted that r0 typically

decreases exponentially as temperature decreases, and, thus,

the overall charge/discharge rate still decreases as tempera-

ture decreases. Nevertheless, FP/LFP interfacial strain can

be utilized to enhance the low-temperature Liþ conduction.

For instance, interfacial strain improves notably the lithiation

Liþ conduction for FP(ab) and the delithiation Liþ conduc-

tion for LFP(bc) according to our results.

It should be noted the two-phase interface should be

sharp, and the deviation from the sharp interface in the anal-

ysis influences largely the values of lattice strain and activa-

tion energy of Liþ conduction.29 Experimental evidences for

the anisotropy of the FP/LFP interface propagation are yet

inadequate at this moment since the phase transformation is

correlated with lattice defects,30 surface states,31 and particle

micro-structure.32 Undoubtedly, in-situ characterizations and

atomic-scale simulations at single-particle scale will facili-

tate future investigations into the FP/LFP interface propaga-

tion kinetics.

In summary, the FP/LFP interfacial strain induced lat-

tice cell volume as well as the activation energy of Liþ trans-

port is investigated. The Liþ conductivity of LFP is affected

largely by the two-phase interfacial strain. At room tempera-

ture, Liþ conductivity at the ac-oriented FP/LFP interface

decreases to �10% of the bulk value. Liþ conductivity at the

bc interface experiences the smallest impact of interfacial

strain, and exhibits a 166% increase in delithiation and a

62% decrease in lithiation. Such a lattice strain effect is

more pronounced at a lower working temperature.
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