Enhancing Lithium Adsorption and Diffusion toward Extraordinary Lithium Storage Capability of Freestanding Ti$_3$C$_2$T$_x$ MXene

Haitao Zhang,aæ Xiaojun Xin,aæ Huan Liu,à Haichao Huang,† Ningjun Chen,† Yanting Xie,† Weili Deng,† Chunsheng Guo,a* and Weiqing Yanga*

†Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering and aState Key Laboratory of Traction Power, Southwest Jiaotong University, Chengdu 610031, P. R. China

§Key laboratory of Magnetic levitation Technologies and Maglev Trains (Ministry of Education), Superconductivity and New Energy R&D Center, Southwest Jiaotong University, Mail Stop 165#, Chengdu 610031, P. R. China

*Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, P. R. China

Supporting Information

ABSTRACT: Chemical etching method shows potential for large-scale and low-cost processed MXenes but incorporates surface terminations such as F&OH that probably deteriorate the lithium storage characteristics. Herein, we propose that tailoring appropriate surface functionalization and the intrinsic electrical properties can dramatically enhance the lithium storage capability of Ti$_3$C$_2$T$_x$ (T stands for F, OH, and O) MXene materials. By carefully controlling the annealing process, the Ti$_3$C$_2$T$_x$ films possess fewer F&OH elements so that with higher conductivity, they are still freestanding and flexible. Density functional theory computations of the low-F&OH-containing Ti$_3$C$_2$T$_x$ show low-ion-diffusion barrier values of 0.34–0.43 eV and a significant increase of Li adsorption energy by 6–30 times compared to those of high-F&OH-containing Ti$_3$C$_2$T$_x$, suggesting high Li-ion storage and transfer capabilities can be achieved in low-F&OH-containing Ti$_3$C$_2$T$_x$ MXenes. Dramatically, the heteroatom-controlled Ti$_3$C$_2$T$_x$ MXene films show reversible capacities of 221 mAh g$^{-1}$ for lithium-ion batteries at a current density of 0.1 C (1 C = 320 mAh g$^{-1}$), which is the highest up to now for pure Ti-based MXenes. These results demonstrate the importance of surface chemistry and electronic structure of MXene in the lithium storage capability, which provides valuable information on designing high-performance MXene-based materials for energy storage, optoelectronic, thermoelectric, and magnetic applications.

1. INTRODUCTION

Due to their high surface-bulk ratios, large interlayer spacing, and low diffusion barriers, two-dimensional (2D) materials have been predicted to provide high Li capacities and superior cycling rates as anodes.$^{1–5}$ Ti$_3$C$_2$ MXene, the first discovered and the most widely studied 2D MXene materials to date,6 shows promise as anode material for Li-ion batteries (LIBs) because of its exceptional properties, including good electronic conductivity, fast Li diffusion, and high theoretical capacity.7–9 The bare Ti$_3$C$_2$ monolayer exhibits a low barrier for Li diffusion and high Li storage capacity (up to Ti$_3$C$_2$Li$_2$, stoichiometry). Density functional theory (DFT) computations predicted that an isolated Li atom diffusion barrier on the Ti$_3$C$_2$ is only 0.07 eV,10 which is much lower than that in other typical anode materials, like graphite (∼0.3 eV)11 and lithium titanate (0.3–0.48 eV).12 The high theoretical capacity and low Li diffusion barriers in monolayer MXenes indicate that these materials may, indeed, be suitable candidates for exploiting simultaneously high-energy and high-power LIBs that are especially essential for state-of-the-art LIBs. However, the unique Li storage properties of MXenes stop at theoretical predictions,$^{13–16}$ and experimental recognition has not been sufficiently made.

Generally, the Li storage and diffusion properties of MXenes can be modulated by physical and chemical treatments. MXenes are usually terminated by many heteroatoms like F, OH, and O due to the presence of HF and H$_2$O during solution-based preparing methods.$^{17–21}$ These heteroatoms usually cause decrease of Li content and the electrical conductivity, leading to lower Li storage capacities and diffusion rate. DFT computations implied that the theoretical Li storage capacity of Ti$_3$C$_2$ MXenes could be dramatically improved by the removal of F groups from the surfaces.10 Experimentally, R.B. Rakhi et al. claimed that the super-
capacitance could also be amazingly increased by nearly 10 times by eliminating the surface groups on Ti$_2$C$_x$MXenes. Although elimination of heteroatoms improves the electrical conductivity and promotes Li storage capacities, the presence of surface functionalities repulsing each other is considered helpful for avoiding the severe restack of 2D MXenes, which facilitates rapid ion transfer. On the other hand, the effect of the surface chemistry evolution on the electronic structure also needs to be further addressed. Till now, it is still an open question why surface chemistry and electronic structure are so influential to the Li storage capability.

2. METHODS

2.1. DFT Computations. All calculations were performed using the Vienna ab initio simulation package (VASP) based on density functional theory (DFT). The Perdew–Burke–Ernzerhof exchange function of the generalized gradient approximation was chosen for the calculations, and the projector-augmented wave pseudopotentials were employed for all ion–electron interactions. Considering both the convergence tests and the computational efficiency, an energy cutoff of 480 eV was chosen for the Ti$_3$C$_2$T$_x$ monolayer to ensure that the total energies were converged within 1×10^{-6} eV per atom. For geometry optimization, Brillouin zone sampling of the Ti$_3$C$_2$T$_x$ monolayer units was carried out with $9 \times 9 \times 1$ meshes using the Monkhorst–Pack method. Meanwhile, the denser mesh of $15 \times 15 \times 1$ was used for computing the density of states (DOS) of the Ti$_3$C$_2$T$_x$ monolayer units. The DFT-D2 method was introduced to consider the van der Waals effect on the atomic interactions of MXenes. For eliminating the interactions between the monolayer and adjacent conformations, a vacuum region of 20 Å was applied in the direction perpendicular to the Ti$_3$C$_2$T$_x$ supercells. To investigate Li-ion diffusion barriers and minimum energy paths, the climbing-image nudged elastic band method implemented in VASP was applied.

2.2. Preparation of Heteroatom-Controllable Ti$_3$C$_2$T$_x$ MXene Films. The preparation of Ti$_3$AlC$_2$ powders was
reported elsewhere. Briefly, titanium (99%, GRINM, China), aluminum (99%, GRINM, China), and carbon black (99%, GRINM, China) powders in a 3:1.2:1.9 molar ratio were mixed, ball-milled, molded, and finally sintered at 1500 °C in an argon atmosphere through a spark plasma sintering method (FCT, Rauenstein, Germany). The exfoliation and delamination of Ti3AlC2 powders to obtain the Ti3C2Tx MXene colloidal solution were previously reported by our work. The freestanding flexible Ti3C2Tx MXene films with desired thickness underwent vacuum-assisted filtration by control of the volume and concentration of the colloidal aqueous solutions. Finally, for tailoring surface functional groups and the electronic structure, Ti3C2Tx MXene colloidal solution were previously reported by our work. The freestanding flexible Ti3C2Tx MXene films with desired thickness underwent vacuum-assisted filtration by control of the volume and concentration of the colloidal aqueous solutions. Finally, for tailoring surface functional groups and the electronic structure, Ti3C2Tx MXene films were carefully annealed by adjusting the annealing temperature from 200 to 600 °C, the annealing time from 0 to 12 h, the annealing atmosphere, and the heating rates. The samples were named as MX0, MX6, and MX12 corresponding to the annealing time.

2.3. Characterizations. X-ray diffraction (XRD) patterns were obtained with a PANalytical X’Pert Powder diffractometer. Scanning electron microscopy (SEM) and X-ray energy dispersive spectroscopy (EDX, JSM-7800F Prime) were used for morphology detection of pristine and annealed films and conduct elemental mapping analysis. Atomic force microscopy (AFM) was performed on an MFP-3D Infinity Asylum Research AFM. Water-stable colloidal solution dropped onto ultra-thin carbon-supported Cu mesh was investigated by TEM and HRTEM (JEOL JEM-2100), with an accelerating voltage of 200 kV. X-ray photoelectron spectroscopy (XPS) depth profile was recorded with a Thermo Scientific ESCALAB 250Xi spectrometer with chamber pressure maintained in the 10−6−10−7 Pa range. Raman spectra of the samples were obtained from a RM2000 microscopic confocal Raman spectrometer with a 514 nm Ar-ion laser beam. The film resistances of heteroatom-controllable Ti3C2Tx MXene films were measured using a four-probe technique (RTS8, China). The mass of the MXene electrodes was determined by a precision electronic balance (ME36S, Sartoruis) with an accuracy of 1 μg.

2.4. Electrochemical Measurements. The cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) were conducted with a CHI 660E electrochemical workstation (Chenhua, Shanghai, China). The galvanostatic charge/discharge (GCD) and cycling stability measurement were carried out on an Arbin MSTAT4 multichannel galvanostat/potentiostat instrument (Arbin). The measured cells named MB0, MB6, and MB12 were used with MX0, MX6, and MX12 as the anodes, respectively.

3. RESULTS AND DISCUSSION

In this work, we realize extraordinary Li storage capabilities through lowering the diffusion energy barriers and boosting Li adsorption energy, in combined experimental and theoretical investigations, for Ti3C2Tx films used as the LIB anodes (Figure 1a,b). Freestanding flexible Ti3C2Tx films (the detailed information for samples and corresponding LIBs is given in Table S1) exhibit a high ratio of carboxyl, whereas a low ratio of hydroxyl and fluorine groups is observed after heat treatment in N2/H2 atmosphere with prolonged reaction.
time (Figure 1c); the sheet resistance of Ti$_3$C$_2$T$_x$ films decreases by 1.4 times after carefully tailoring the surface chemistry. Consequently, the freestanding flexible Ti$_3$C$_2$T$_x$ films with high conductivity can be directly used as the substrate- and binder-free LIB anodes. Dramatically, the Ti$_3$C$_2$T$_x$ MXene films show reversible capacities of >200 mAh g$^{-1}$ for lithium-ion batteries at a current density of 0.1 C (1 C = 320 mAh g$^{-1}$), which is the highest reported so far for pure Ti$_3$C$_2$T$_x$ MXene materials, including other Ti-based MXenes.19,25,28 Our DFT computations reveal that this extraordinary Li storage capability is related to low diffusion energy barriers and strong Li adsorption. Through tailoring surface chemistry and electronic structure to boost Li-ion storage capability, the present work guides further studies on designing high-performance MXene-based materials for practical applications.

The representative scanning electron microscopy (SEM) image of Ti$_3$C$_2$T$_x$ MXene platelets is shown in Figure 1d, in which the MXene platelets show flexibility as demonstrated by self-generated corrugations of the platelets. In fact, the vacuum-filtrated Ti$_3$C$_2$T$_x$ MXene films possess good mechanical flexibility and maintain this peculiarity for annealed films (SI, Figures S1–S3). According to noncontact atomic force microscopy (AFM) images (Figure 1e), the MXene membranes are partially curved at the edges, again indicating the intrinsic flexibility. The step height at the edge of the flake is about ~2.5 nm, as marked in Figure 1e and Figure S4 (SI). According to the high-resolution transmission electron microscopy (HRTEM) characterization (SI, Figure S5), the interlay spacing of Ti$_3$C$_2$T$_x$ MXene sheets is around 2.0 nm. The enlarged thickness determined by AFM measurement could be attributed to a number of factors that include AFM
tip–surface interactions, the interaction with an extrinsic substrate, and presence of trapped interfacial water molecules, among others. The thickness of the pristine Ti3C2Tx films with ordered layer stacking is approximately ~900 nm, as determined by the cross-sectional SEM image (Figure 1f), and the thickness could be tailored as reported by our previous work. These morphological characterizations clearly demonstrate that Ti3C2T6 MXene platelets with large interlayer spacing and intrinsic flexibility can be assembled into freestanding flexible layered Ti3C2T6 MXene films. The phase characteristics of pristine and annealed Ti3C2T6 MXene films are determined by X-ray diffraction (XRD), as shown in Figure 2a. The precursors Ti3AlC2 with ternary-layered structure (SI, Figure S6) transform into 2D MXenes. Four typical diffraction peaks can be ascribed to the (002), (004), (006), and (008) planes of Ti3C2T6 MXenes. In XRD pattern, any impurities of TiO2 reflection in MX12 are not detected, implying that the heat treatment in N2/H2 atmosphere at 400 °C does not affect the thermal stability of Ti3C2T6 MXenes. However, there is an apparent 20 increment for (002) diffraction peak of MX12 in comparison to that of MX0, indicating a little bit of restack. This restack may be ascribed to the elimination of surface terminations and trapped water molecules on and between the layers.

For analyzing the annealing treatment effect on the surface chemistry, we performed XPS depth profiling for Ti3C2T6 MXene films. The atomic percentages of Ti, C, O, and F dependencies on etch time are plotted in Figure 2b. As shown in Figure 2b, the dominant compositions of the samples are Ti, C, O, and F with very few traces of Al (SI, Figures S7 and S8). These results are similar with the EDX mapping results (SI, Figure S9). As expected, the F ratio is sharply decreased from 8.1 atom % for MX12 to 4.1 atom % for MX0 after the annealing treatment. In contrast, both the Ti and O concentrations increase with prolonging sputter time. XPS of F element shows an invariant peak position on varying etch time (Figure S10). In addition, the XPS depth profiling of C, O, and F with very few traces of Al (SI, Figures S7 and S8) show the lowest sheet resistance among the studied samples, reaching 0.17 ± 0.01 Ω □⁻¹. By contrast, MX0 and MX6 exhibit higher sheet resistance values of 0.40 ± 0.02 and 0.23 ± 0.02 Ω □⁻¹, respectively. The increased electrical conductivity may be attributed to the elimination of F element and some structural defects after annealing treatment. In short, after carefully controlling the parameters of annealing treatment, the annealed Ti3C2T6 MXenes show lower contents of F&OH terminations and higher electrical conductivity in comparison with the pristine samples.

Since the harmful terminations are efficiently eliminated and the electrical conductivity is enhanced without incorporating the impurities, we anticipate that the Li storage of annealed Ti3C2T6 MXene films would be improved. The electrochemical measurements were carried out to observe the feasibility of using flexible substrate- and binder-free Ti3C2T6 MXene films in LIBs. Figure 3a shows electrochemical impedance spectra (EIS) of Ti3C2T6 anode in a 1 M LiPF6/ethylene carbonate–dimethyl carbonate electrolyte at the open-circuit voltage. As expected, the MB6 and MB12 using MX6 and MX12 as the anodes, respectively, show much more lower diffusion resistance than that of MB0 with MX0 as the anode. After 50 cycles from 0.1 to 1 C, the internal resistance and Warburg impedance of MB12a further decline due to the formation of a solid electrolyte interface (SEI), which promotes ionic migration. Figure 3b shows cyclic voltammetry (CV) curves of Ti3C2T6 anodes using a 0.1 mV s⁻¹ scan rate. The first cathodic scan exhibits an irreversible current at a voltage of ~0.72 V (vs Li/Li⁺) due to the formation of an SEI layer. This behavior commonly appears in 2D materials, like graphene, MoS2, and other MXenes. Another phenomenon is that all subsequent CV cycles exhibit stable quasirectangular CVs, which is different from the commercial LIB anodes, like graphite and lithium titanate. The two well-defined redox peaks in the CVs of MB12 correspond to the Li⁺ insertion–deinsertion reaction as follows

\[y\text{Li}^+ + \text{Ti}_3\text{C}_2\text{T}_6 + y\text{e}^- \leftrightarrow \text{Ti}_3\text{C}_2\text{T}_6\text{Li}_y \]

Figure 3c shows the first galvanostatic charge/discharge (GCD) curves measured in the voltage range of 0.01–2.5 V (vs Li/Li⁺) at a current rate of 0.1 C. The first charge curve shows a capacitive slope but with a little smaller capacity of 221 mAh g⁻¹, resulting in a low Coulombic efficiency of 68% for the first cycle. The large irreversibility of 32% and low Coulombic efficiency of Ti3C2T6 at the initial charge/discharge cycle are similar to the previously reported results for Ti3C2T6 and Ti3CT. The irreversible capacity loss is most likely caused by side reactions, such as SEI formation and electrolyte decomposition. The flexible substrate- and binder-free Ti3C2T6 exhibits good rate capability, as shown in Figure 3d. When cycled at a high rate of 1 C, still 124 mAh g⁻¹ can remain, that is 56% initial retention at 0.1 C. The reversible capacity of MB12 reaches up to ~200 mAh g⁻¹, which is higher than that of other pure Ti-based MXenes but lower than that of delaminated Ti3C2T6 and some composites. Remarkably, an exceptionally long lifetime of 500 cycles is achieved with a stable capacity of ~100 mAh g⁻¹ when cycled at 1 C (Figure 3e). The good cycle stability and high-rate capability of Ti3C2T6 indicate this material as a potential candidate for energy storage applications.

For more details about surface chemistry and electronic structure on Li-ion storage capability of the Ti3C2T6...
MXenes, we performed DFT calculations with Ti$_3$C$_2$ monolayer functionalized by O, OH, and F groups. Here, we mainly studied seven different Ti$_3$C$_2$Tx MXenes labeled Ti$_3$C$_2$O$_2$, Ti$_3$C$_2$F$_2$, Ti$_3$C$_2$(OH)$_2$, Ti$_3$C$_2$O$_{1.75}$F$_{0.25}$, Ti$_3$C$_2$O$_{0.75}$F$_{0.25}$(OH), and Ti$_3$C$_2$O(OH), and Ti$_3$C$_2$O$_{1.75}$(OH)$_{0.25}$. After full optimization, it is found that the O, OH, and F atoms all prefer to locate at the hollow sites among the three neighboring C atoms (Figure 4a). The lattice parameters and the bond lengths of Ti–C, Ti–O, Ti–F, C–O, and C–F in the ground state are collected in Table S2, in good agreement with the previous studies. Due to O, F, and OH functionalization, the length of Ti–C is elongated compared to that in the bare Ti$_3$C$_2$. The bond length of O/F and Ti and O/F and C in Ti$_3$C$_2$O$_2$ and Ti$_3$C$_2$O$_{1.75}$(OH)$_{0.25}$, Ti$_3$C$_2$O(OH), and Ti$_3$C$_2$O$_{0.75}$F$_{0.25}$(OH). After full optimization, it is found that the O, OH, and F atoms all prefer to locate at the hollow sites among the three neighboring C atoms (Figure 4a). The lattice parameters and the bond lengths of Ti–C, Ti–O, Ti–F, C–O, and C–F in the ground state are collected in Table S2, in good agreement with the previous studies. The O, F, and OH functionalization, the length of Ti–C is elongated compared to that in the bare Ti$_3$C$_2$. The bond length of O/F and Ti and O/F and C in Ti$_3$C$_2$O$_2$ and Ti$_3$C$_2$O$_{1.75}$(OH)$_{0.25}$, Ti$_3$C$_2$O(OH), and Ti$_3$C$_2$O$_{0.75}$F$_{0.25}$(OH). After full optimization, it is found that the O, OH, and F atoms all prefer to locate at the hollow sites among the three neighboring C atoms (Figure 4a). The lattice parameters and the bond lengths of Ti–C, Ti–O, Ti–F, C–O, and C–F in the ground state are collected in Table S2, in good agreement with the previous studies. To explore the Li storage capability, various Li coverage rates of Li atoms adsorbed on the Ti$_3$C$_2$Tx with a 2 × 2 supercell are studied. Specifically, as many as 8 Li atoms can be adsorbed for Ti$_3$C$_2$O$_2$, which is the highest concentration of Li atoms adsorbed on all of these Ti$_3$C$_2$Tx. The maximum number of Li atoms that can be adsorbed decreases when some of the O of the Ti$_3$C$_2$O$_2$ are replaced by F or OH. For example, only 6 Li atoms can be adsorbed on Ti$_3$C$_2$O$_{0.75}$F$_{0.25}$(OH), 4 Li on Ti$_3$C$_2$F$_{0.25}$(OH)$_{1.75}$, and Ti$_3$C$_2$F$_2$ and 2 Li on Ti$_3$C$_2$(OH)$_2$, respectively. This reveals that dominant O termination with less F&OH groups is helpful for Li-ion storage capacity. To assess the stabilities of lithiated Ti$_3$C$_2$Tx, the adsorption energy was calculated with: $E_{ad} = (E_{Li-MX} - E_{MX} - nE_{Li})/n$, where E_{Li-MX} is the total energy of a lithiated monolayer, E_{MX} denotes the total energy of bare MXene monolayer, E_{Li} is the chemical potential of Li atom, and n presents the number of adsorbed Li atoms. The adsorption energies are summarized in Table S2 where lower E_{ad} values mean stronger binding of Li to the Ti$_3$C$_2$T$_x$ surfaces. For Ti$_3$C$_2$O$_2$, Ti$_3$C$_2$F$_2$, and Ti$_3$C$_2$(OH)$_2$, the adsorption energies are −1.581, −0.222, and −0.053 eV per Li atom, respectively. For other compounds with mixed O, F, and OH terminations, the adsorption energies are between −1.58 and −0.053 eV per Li atom, suggesting the adsorption strength of Li atoms highly depends on the terminations and the order from strong to weak is O > F > OH. These theoretical results unambiguously imply that the annealed Ti$_3$C$_2$Tx MXenes possess high Li-ion adsorption energy after efficiently eliminating the partial of F&OH terminations and hence can deliver high Li-ion storage capacity.

Next, we studied the diffusion barriers for Li atoms on the surfaces of Ti$_3$C$_2$T$_x$ monolayers. Except for the Ti$_3$C$_2$ MXene fully terminated by O with a 3 × 3 supercell, Ti$_3$C$_2$O$_{1.75}$ two other configurations Ti$_3$C$_2$O$_{1.75}$F and Ti$_3$C$_2$O$_{1.75}$O$_{1.75}$F$_{0.25}$(OH) are studied for the influence of a few F and OH groups on the Li diffusion due to the small amounts of F and OH components observed in our experiments. Among different diffusion pathways, the one that Li ion prefers to migrate on is C →
Ti → C. The energy barriers for Ti$_3$C$_x$O$_{3y}$, Ti$_3$C$_x$O$_{3y}$, F, and Ti$_2$C$_4$O$_{1.5y}$-(OH) are 0.36, 0.34, and 0.43 eV, respectively, which indicates that a few of F atoms influence little the Li diffusion at O-terminated Ti$_3$C$_x$ MXene, whereas OH group draws back a lot. In Figure 4b and Figure S13, we show the performing projected density of states (PDOS) of the lithiated Ti$_3$C$_2$T_{28} monolayers. Similar to Ti$_3$C$_2$T$_x$, the lithiated Ti$_3$C$_2$O$_2$, Ti$_3$C$_2$(OH)$_2$, and Ti$_3$C$_2$F$_2$ monolayers are intrinsically metallic, with a large number of electronic states near the Fermi level. Besides, there is much more hybridization between the O p or F p and Li s states than that between O p, H s, and Li s, which supports the results of Li adsorption energy shown above.

Considering that the first Li layer cannot be utilized completely and the extra Li layer can be adsorbed, we introduce one more Li layer (second Li layer) on the first Li layer-Ti$_3$C$_2$T$_x$. The adsorption energy E_{ad} of the second Li layer is used to check the stability of the structure: $E_{ad} = (E_{LiL-M} - E_{LiM} - mE_{Li1})/m$. The adsorption energies of the second Li layer are about ~1.58 to ~1.68 eV, shown in Table S3. Compared with the bcc Li cohesive energy of ~1.701 eV/atom in our calculations, apparently the E_{ad} values are larger, which indicates the possibility of the second Li layer being adsorbed on the first Li layer-Ti$_3$C$_2$T$_x$. As shown in Table S3, the number of Li atoms that can be adsorbed in the second Li layer decreases as a certain amount of O groups is substituted by F&OH groups. For example, 8 Li atoms can be adsorbed in the extra layer for Ti$_3$C$_2$O$_2$, Ti$_3$C$_2$(OH)$_2$, Ti$_3$C$_2$F$_2$, Ti$_3$C$_2$O$_{1.75}$F$_{0.25}$, and Ti$_3$C$_2$O$_{1.75}$(OH)$_{0.25}$, whereas for Ti$_3$C$_2$O-(OH) and Ti$_3$C$_2$(O$_{0.75}$F$_{0.25}$)(OH), only 2 Li atoms can be adsorbed. In Figure 4c, we show the valence electron localization function (ELF) of the lithiated Ti$_3$C$_2$O$_2$, Ti$_3$C$_2$F$_2$, and Ti$_3$C$_2$(OH)$_2$ with two Li layers. For comparison, the ELF of the lithiated MXenes with mixed functionalized groups is also shown (SI, Figure S14). Apparently, electron transfer occurs between the second Li layer and the first Li layer-Ti$_3$C$_2$T$_x$. The amount of charge transfer was estimated quantitatively by the Bader charge analysis. It shows that the extra Li layer acts as an electron donor as about 0.77 and 0.54e transferred to the first Li layer for Ti$_3$C$_2$F$_2$ and Ti$_3$C$_2$(OH)$_2$, respectively, whereas for Ti$_3$C$_2$O$_2$, the extra Li layer acts as an electron acceptor with about 0.16e transferred from the first Li layer. This may be due to the larger amount of Li atoms in the first Li layer of Ti$_3$C$_2$O$_2$ than that in the first Li layers of Ti$_3$C$_2$F$_2$ and Ti$_3$C$_2$(OH)$_2$.

In view of the computation results shown above, we can see that Ti$_3$C$_2$T$_x$ with higher O and fewer F&OH terminations shows higher Li content considering two Li layers, stronger adsorption strength for Li adatoms among the Ti$_3$C$_2$T$_x$ and a low energy barrier for Li diffusion. For O termination-dominated Ti$_3$C$_2$, a small number of F&OH groups have less influence whereas more F&OH groups result in weaker adsorption strength, less Li content, and a higher diffusion barrier. In good agreement with our experiment, the O-dominated MX6 and MX12 exhibit superior Li-ion storage capability.

4. CONCLUSIONS

In conclusion, we have systematically investigated the surface chemistry and electronic structure effects on Li-ion storage capabilities of functionalized MXenes using a combination of experimental and theoretical approaches. We confirm that careful annealing treatment is efficient to tailor the surface-functionalized groups without incorporating any impurities. The surface heteroatoms’ controllability in turn affects the electronic structure of MXenes. A high reversible Li-ion capacity and good rate capability for freestanding Ti$_3$C$_2$T$_x$ MXene films with low contents of F&OH terminations along with enhanced electrical conductivity are achieved. Calculations of the Li-ion storage capacity of terminated MXenes predict sufficient capacity and rate-capability attributes from lower Li diffusion barriers and stronger Li adsorption. Our combined experimental and theoretical findings disclosing the boost of Li storage capabilities via tailoring surface chemistry and electronic structure of 2D MXenes pave the way for designing high-performance energy storage devices as well as catalytic, optoelectronic, and thermoelectric devices based on other 2D materials.

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.jpcc.8b11255.

Preparation of MXene colloidal solution and films, morphological characterizations of MXene films; compositions of both pristine and annealed MXene films; DOS and ELF of MXene supercells; detailed samples information; lattice parameters; adsorption energy of different MXene systems (PDF)

AUTHOR INFORMATION

Corresponding Authors

*E-mail: csguo@swjtu.edu.cn (C.G.).
*E-mail: wqyang@swjtu.edu.cn (W.Y.).

ORCID

Chunsheng Guo: 0000-0002-2037-1533
Weiqing Yang: 0000-0001-8828-9862

Author Contributions

*H.Z. and X.X. contributed equally to this work.

Author Contributions

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

We are thankful to the Analytical and Testing Center of Southwest Jiaotong University for supporting the SEM measurements. This work is supported by the National Natural Science Foundation of China (No. 16098.16033). and Special Funding of China Postdoctoral Science Foundation (2018T110992).

REFERENCES

G. Thermodynamic and kinetic properties of the Li-graphite system: Li7Ti5O12 of lithium titanate from first principles. Lithium-ion batteries.

Nanocrystals produced by exfoliation of Ti3AlC2.

Structural modeling of the atomic pair distribution function.

OH) monolayer.

The Journal of Physical Chemistry C Article

Cr2C and V2C monolayers as anode materials for high-performance applications of graphene-based 2D heterostructures.

mechanical robust and highly ion-conductive polymer-blend coating for high-power and long-life lithium-ion battery anodes.

Advis. Mater. 2015, 27, 130−137.

Yu, P.; Cao, G.; Yi, S.; Zhang, X.; Li, C.; Sun, X.; Wang, K.; Ma, Y. Binder-free 2D titanium carbide (MXene) carbon nanotube composites for high-performance lithium-ion capacitors. Nanoscale 2018, 10, 5906−5913.

Zhou, L.; Zhu, Y.; Chen, Q.; Zhou, J.; Zhuo, S. P. Fe3O4@Ti3C2 MXene hybrids with ultrahigh volumetric capacity as anode material for lithium-ion batteries. J. Mater. Chem. A 2018, 6, 11189−11197.

 layered Ti2C MXene electrodes for electrochemical energy storage.

Li, L. F.; Wang, F.; Zhu, J. F.; Wu, W. L. The facile synthesis of layered Ti2C3 MXene/carbon nanotube composite paper with ...

(41) Zhu, J.; Schwingenschlögl, U. P and Si functionalized MXenes for metal-ion battery applications. *2D Mater.* 2017, 4, No. 025073.

(43) Xie, Y.; Kent, P. R. C. Hybrid density functional study of structural and electronic properties of functionalized Ti_{\text{n+1}}X_{\text{n}}(X = C, N) monolayers. *Phys. Rev. B* 2013, 87, No. 235441.
