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A B S T R A C T

In recent years, the rapidly developed intelligent transportation system (ITS) is rendering safety and convenient
life to human. However, the external power source with limited life is still a big technical bottleneck for further
development of the wireless monitoring sensors in ITS. Fortunately, nanogenerator can not only harvest ambient
environment energy during traffic carrier running process to power lots of arbitrarily distributed sensors of ITS,
but also act as active sensor to realize self-powered wireless monitoring for ITS. This paper systematically re-
views the development of nanogenerators, including piezoelectric nanogenerators and triboelectric nanogen-
erators, for self-powered technology in land-, water- and air-ITS, such as automobiles, trains, vessels and air-
crafts, along with bridges, tunnels, highways and tracks. Meanwhile, some major achievements are summarized.
Finally, perspective and remaining challenge are also discussed for further development of self-powered ITS.

1. Introduction

In human history, transportation allows human to know the world
and promotes cultural communication, playing an indispensable role
for human civilization. Benefiting from the development of transpor-
tation, human can go further both in distance and civilization [1]. In
modern life, intelligent transportation system (ITS) is developed for
human safety and convenience, especially in urban transportation
network [2,3]. Sensors, as basic of ITS, are widely distributed for signal
collection [4,5]. And in the whole system, big data and subsequent
processing can come into play for transportation scheduling, which can
be called intellectualization, only if sensors work. Thanks to the de-
velopment of micro electronic technology, the smaller sensors have
lower energy consumption. However, the power source (batteries or
supercapacitors) for sensors is still life-limited. It's a huge project to
frequently replace or recharge for a mount of arbitrarily distributed
sensors. Meanwhile, the waste batteries bring a great impact on en-
vironment. On the other hand, traditional cable power supply shows a
rapidly growing problem of complex wire arrangement owing to the
increasing number of sensors. In this regard, self-powered technology is
highly desirable and mandatory.

In fact, there are various energy sources during vehicle running
process for harvesting, such as vibration energy, wind energy, impact

energy and so on. Here, self-powered technology is to harvest these
kinds of energy for sensors without external power source, solving the
problem of complex wire arrangement. As an energy harvester, the
piezoelectric nanogenerator (PENG) [6] was first presented in 2006
using zinc oxide (ZnO) nanowires (NWs), marking the beginning of self-
powered technology. The principle can be concluded as coupling of
piezoelectric and semiconducting properties, creating a strain field and
charge separation across ZnO NW. And the rectifying characteristic of
the Schottky barrier generates electrical current. After this work, many
studies about enhancement [7–10] and application [11–17] of ZnO, as
well as other piezoelectric materials, such as lead zirconate titanate
(PZT) [18], and BaTiO3 (BTO) [19], were reported one after another.
Then, by conjunction of triboelectrification and electrostatic induction,
the triboelectric nanogenerator (TENG) was firstly invented in 2012
[20]. Up to now, TENGs have a very high area power density of 500W/
m2, and the volume power density reaches 15MW/m3 [21]. In the last
few years, TENGs have a fast development, including the vertical con-
tact separation mode [22–25], the sliding mode [26–30], the single-
electrode mode [31–35], and the freestanding triboelectric-layer mode
[36–39]. Many studies have been reported for improvement in mate-
rials [40–47], output [48–54], stability [55–58], structure design
[59–66], and applications [67–84]. Not only because of the high power
density and efficiency, TENGs show great property and applicability for
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wide adjustability in various environment. Especially, the unique light
weight and high efficiency at variable frequency, which is common in
modern transportation, will undoubtedly lead to tremendous potential
in ITS.

Here, this review focuses on the development of nanogenerators for
self-powered technology in land-, water- and air- ITS, including vehicles
and roads. Fig. 1 illustrates the theme of this article, including several
typical designs and applications in transportation. In the first part of
this review, we summarized the applications of TENGs and PENGs for
vehicles, including land vehicles (automobiles, trains, and bicycles),
water vehicles (vessels), and air vehicles (airplanes). In the subsequent
section, we elaborated on the intelligent roads by nanogenerators, in-
cluding land roads (bridges, tunnels, highways and tracks), as well as
water roads (typically sea). Finally, some perspectives and challenges
about the future development and application of nanogenerators for ITS
were discussed.

2. Nanogenerators for intelligent vehicles

Vehicles play an indispensable role in transportation system, be-
cause they are the carriers of passengers and cargos. Therefore, the
safety of vehicles is always the research emphasis. Nevertheless, some
parts of vehicles can't be monitored in real time, owing to the limitation
of power and complex wire management. Combined with nanogen-
erators, components of vehicles can be improved to be self-powered,
safer and more reliable, leading to vehicles intellectualization.

2.1. Land transport vehicles

2.1.1. Automobiles
Automobiles, as one of the most popular transportation, are widely

used all over the world. With the development of intelligent auto-
mobiles, information collection is more and more important. However,
sensors, as the information collector, need uninterrupted electric power
to work and high accuracy to keep error as small as possible. In this
case, nanogenerators can be power source and high sensitive sensors at
the same time. Fig. 2a shows structure design of the PENG as a self-
powered 3D acceleration sensor [85]. This design made it possible to
measure vector acceleration in any direction. What's more, the in-
dividual sensor had high sensitivity of 2.405 nA s2 m−1 and excellent
stability of 97% remaining after 10000 cycles, owing to the unique
piezoelectric material, Polyvinylidene Fluoride (PVDF) by high-pres-
sure melt crystallization with a high β-phase crystallinity of 86.48%. As
application, a collision was simulated for test of real-time collision
monitoring and alert signal transmission. On the other hand, TENGs are
also utilized as acceleration sensors. Different from the principle of
PENGs, the output of TENGs relies on the sliding displacements [86].
Heo et al. presented an omnidirectional impact sensor using a TENG
[87]. The structure design was a hemisphere with PMMA (polymethyl

methacrylate) coated as triboelectric negative material. And the
working principle was mainly the contact area change induced by the
barycenter offset. It's similar to the work by Wu et al. [88].

Tires, as consumables, catch pretty attention on safety monitoring
[89–91]. But the tire sensors are powered by life-limited batteries,
hindering the intelligent development. For this problem, Qian et al.
proposed a TENG to harvest rotation energy [92]. The periodic mag-
netic force made two parts of TENG contact and separate. Thus, the
device had a high peak power of 22.3 mW. For the same purpose of
rotation energy harvesting, Chen et al. proposed a free-rolling structure
hybrid nanogenerator [93]. And it was demonstrated to power wireless
sensors. Guo et al. utilized a direct method to harvest the rolling tire
mechanical energy by arrays of compressible hexagonal-structured
TENG [94]. Different from the contact-separate mode, TENGs of single-
electrode mode can harvest tire energy by friction with ground [95,96].
Whereas, PENGs with thin thickness have a natural advantage when
applied on tires. Hu et al. demonstrated the possibility for energy
harvesting from automobile tire by integrating PENG onto the inner
surface of bicycle tire [97]. Fig. 2b shows the tire shape change and
experiment setup, inducing the electricity generating of ZnO. In this
work, PENG was based on ZnO NWs for their flexibility. With the ef-
fective working area of 1.5 cm×0.5 cm, the PENG had a maximum
output power density of 70 μW/cm3. In addition, the output changed
with the increasing speed of the vehicle from 10m/s2 to 30m/s2,
showing the potential as a self-powered speed sensor.

Besides tires, engines are essential as the core component of auto-
mobiles. Zhang et al. presented a highly sensitive acceleration sensor
based on a TENG [98]. With the component of liquid metal droplet and
nanofiber-networked PVDF film by electrostatic spinning (Fig. 2c), the
device had a small size but high open-circuit voltage and short-circuit
current, reaching up to 15.5 V and 300 nA at 60m/s2. It's worth men-
tioning that PVDF nanofibers by electrostatic spinning is proved out-
standing in performance of both piezoelectricity [99] and triboelec-
tricity [100]. When applied on the automobile engine, the sensor
exhibited extreme sensitivity with different states of start, running, and
stop. In addition, vibration is very common on many components of
automobiles. Xu et al. designed a spring structure TENG to harvest the
vibration on automobile [101]. At the same time, the device could also
be used as a vibration sensor.

As one of environmental pollution sources, tail gas is always a hot
topic. Shen et al. presented a self-powered vehicle emission testing
system by coupling a TENG and a resistance-type gas sensor [102]. The
working principle was based on the different output with various ex-
ternal load resistances. They tested the output voltage with NO2 con-
centrations ranging from 0 to 100 ppm, as well as different relative
humidity conditions with 100 ppm NO2. Finally, 3 series-connection
light-emitting diodes (LEDs) were connected in the circuit of the TENG
with a gas sensor, and the self-powered test system was proposed as
Fig. 2d. LEDs could be lighted up when NO2 was injected, which could

Fig. 1. Schematic diagram showing the main de-
velopment of nanogenerators for self-powered
technology in the field of intelligent transportation
system. Vehicles: Airplanes [179]. Balloons [132].
Trains [116]. Automobiles [109]. Bicycles [120].
Vessels [126]. Roads: Bridges [140]. Highways
[152]. Tracks [160]. Tunnels [144]. Sea [174].
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be regarded as an alarm. Despite of the gas sensor, many studies have
been reported that TENG can be utilized as removal of particulate
matter (PM) [103–107]. Han et al. firstly applied a TENG as a filter on
automobiles, making the system self-powered [108]. And the result
showed excellent performance with more than 95.5% of removed PM
2.5.

As the critical supporting part of automobiles, brake pads play an
important role in automobile safety system. At the same time, braking

energy is abundant as supplement of automobile energy. Wen et al.
presented a harsh-environmental-resistant TENG, which could be di-
rectly used as the brake pad [109]. It was made by hybridizing mi-
cro–nanocomposite with a good wear resistance that the mean dynamic
friction coefficient was ~0.69 μmat low-friction force of about 8.1 N
and room temperature. Also, the high-temperature tolerance was ex-
cellent (temperature range of −30 to 550 °C) in case of the heat when
braking. Based on the wear-resistant triboelectric materials, a harsh-

Fig. 2. Applications of nanogenerator in automobile. (a) Structure design and photograph of the fabricated sensor for vehicle collision alert [85].
(b) ZnO based nanogenerator is fixed on the inner tire to harvest energy [97].
(c) Self-powered acceleration sensor is used to monitor process of engine for start, running and stop [98].
(d) Schematic illustration of the self-powered vehicle emission testing system [102].
(e) Diagram of two TENGs and application as a self-powered braking system [109].

Fig. 3. Energy harvesting technology for train. (a) Self-powered system including TENG, power management and a sensor for train monitoring [116].
(b) Placement of energy harvester on the bogie for a sensor [118].
(c) Design and dimensions of the energy harvesting module. (d) Pendulum moves in the X-direction, Y-direction, vertical vibration [119].
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environmental TENG (heTENG) was designed with good performance,
consisting of a freestanding mode heTENG-I and a single electrode
mode heTENG-II, shown in Fig. 2e. Under engine speed of 4000 r/min
and a frequency around 1 Hz, output performance of 221 V, 27.9 μA/cm
[2], and 33.4 nC/cm2 could be produced. And the self-powered smart
brake system with the device, a diode-bridge, a 1 μF capacitor, a switch,
and a wireless transmitter could automatically provide exact early-
warning. Another study also reported the application of a TENG in
brake system [110]. But the TENG was free-standing mode to harvest
rotation energy for the self-powered Hall vehicle sensor. Meng et al.
reported a novel idea about driver behavior monitoring by TENGs
[111], which extended the application to drivers. As can be seen, the
applications of nanogenerators for automobiles are not only limited to
automobile parts, but derivative parts (for example, driver behavior)
begin to be emphasized. This trend may expedite the intelligent

development of automobiles.

2.1.2. Trains
Trains run on the tracks, usually faster than automobiles. Hence, the

vibration is more violent and general on trains [112–115]. Jin et al.
reported a maglev porous nanogenerator (MPNG) to harvest vibration
energy of bogie for a wireless smart sensor [116]. The schematic il-
lustration can be seen in Fig. 3a. The ingenious maglev structure made
it less impact energy and more energy for electric energy transform.
MPNG consisted of a TENG and an electromagnetic generator (EMG),
which could deliver peak power density of 0.34mW/g at 50MΩ and
0.12mW/g at 700Ω, respectively. The electricity could be stored in
supercapacitors or Li-ion batteries through the power management.
Finally, the MPNG was demonstrated working well when connected
with a wireless temperature and humidity sensor. What's more, MPNG

Fig. 4. Nanogenerator applied on bicycle for energy harvesting. (a) Automatic transition TENG applied on bicycle to harvest rotation energy and monitor rotational
speed [120].
(b) The designed 3D-TENG applied on the rotating bicycle wheel [23].
(c) The multiunit TENG to harvest vibration energy on a bicycle [121].
(d) Fabrication process of the porous PENG and its application to harvest energy when fixed on the bicycle tire [122].

L. Jin, et al. Nano Energy 66 (2019) 104086

4



had a small size and light weight, which could be packaged as arrays for
more energy harvesting and different applications.

Not only TENGs, PENGs have good performance in vibration energy
harvesting. The cantilever structure is widely used as a typical vibration
energy harvesting structure, even in the novel ZnO NWs [117]. Deng
et al. improved it by a tuning fork-shaped PENG, and got optimized
power at low frequency [7]. Ortiz et al. used PZT, which had excellent
piezoelectricity, to harvest vibration energy to power bogie-mounted
sensors for wireless communication (Fig. 3b) [118]. Finally, the whole
self-powered system was mounted on the bogie and tested, demon-
strating the possibility to harvest vibration energy in bogies.

Cho et al. designed a piezoelectric energy harvesting system by
magnetic pendulum movement (PEH-MPM) [119]. The piezoelectric
module was designed as cantilever beam with PZT, but the free end was
added with a tip magnet (Fig. 3c). Also, a magnet was added on the
pendulum rod. And then, the PEH-MPM could be placed on train. As
shown in Fig. 3d, when there was movement on the X-direction, the
pendulum rod could move in X-direction. Because of attraction and
repulsion between two magnets, the piezo module had a deformation.
Thus, electricity could be generated. Similarly, when the rod moved in
Y-direction, electricity could be also generated. If there was no pen-
dulum rod, the tip magnet could act as a mass. It's a classical cantilever
beam, which can generate electricity when there is vibration in Z-di-
rection. In conclusion, it had maximum average power density of
40.24 μW/cm3, supporting recording system for vibration and accel-
eration data of the train. Compared with automobiles, trains show
obvious insufficiency in intellectualization. The core components of
trains, such as bogies and wheels, are in urgent need of real-time and
self-powered monitoring.

2.1.3. Bicycles
Bicycles are very popular and environmental friendly for a short

distance. But the intelligent development is still slow owing to the
limited power source for electronics in bicycles. Fortunately, when
people ride bicycles, there're vibration energy, rotation energy, and
wind energy, which can be harvested by nanogenerators. Chen et al.
presented an automatic transition TENG (AT-TENG) for rotation energy
harvesting [120]. Different from traditional TENGs for rotation energy
harvesting, this device could convert the in-plane sliding electrification
into a contact-separation working mode (Fig. 4a), ensuring the high
output performance and robustness at the same time. The authors also
investigated the output on different rotation speed, and found that
higher speed could lead to non-contact working state while lower speed
could lead to contact working state. It's an inherent characteristic, be-
cause the magnetic repulsive force has a shorter exertion time at higher
speed. As a result, it could deliver an open-circuit voltage up to 530 V
with short-circuit current of 0.26mA at a rotation rate less than
240 rpm. When AT-TENG was applied on a bicycle and a human rides
naturally, the as-harvested energy lighted up 24 spot lights simulta-
neously. On the other hand, due to the unique working mode, AT-TENG
could be utilized as a self-powered real-time speedometer for moving
speed and traveled distance with ultrahigh measurement accuracy.

Besides rotation energy, Yang et al. reported a 3D-TENG to harvest
vibration energy and rotation energy [23]. The core of this device was a
mobile iron mass suspended by three identical springs, enabling it to
have two working mechanism, contact separate mode and sliding mode,
as shown in Fig. 4b. Wang et al. designed multiunit TENG, which could
harvest ambient vibration energy over a wide frequency range [121]. In
this work, TENG had a small volume of 5.7× 5.2× 1.5 cm and light
weight of 45 g, owing to the zigzag structure (Fig. 4c) for 15 layers. But
its output power density was as high as 102W/m3 at 7 Hz. What's more,
it maintained a stable current output from 5 to 25 Hz, showing the
potential for broad applications. When applied on a bicycle, the vi-
bration energy from bumping could be harvested for sensors to monitor
the environmental temperature, humidity, and speed through a power
management unit. When passing a gentle road bumping for 90m, the

energy harvested by the TENG could charge a 1mF Al electrolytic ca-
pacitor from 0 to 2.3 V. Therefore, sensors could be continuously
powered while riding a bicycle.

Flexible nanogenerators usually have adaptability in shape, and fit
for curvature of tire. Ma et al. presented a flexible porous nanogen-
erator (FPNG) by the conjunction of ferroelectricity and piezoelectricity
[122]. PZT and salt were added in polydimethylsiloxane (PDMS). After
cured, salt was removed and the composite was prepared. Finally, after
polarization and preparing electrode on it, a FPNG was prepared. The
detailed process can be seen in Fig. 4d. With a very small dimension of
2×2×0.3 cm3, FPNG had open-circuit voltage and short-circuit cur-
rent of 29 V and 116 nA, respectively. As can be seen, the FPNG fit the
bicycle tire well, showing the strong adaptability in shape. When it
rolled, electricity could be generated due to the deformation of the
FPNG. The energy harvesting method is similar to automobile tire.
Based on the studies, bicycles with nanogenerators have great potential
to monitor their own states and transmit signals, which is the basic for
intelligent development.

Land transport vehicles play a crucial role in our daily life. With the
rapid development of big data and artificial intelligence (AI) tech-
nology, automobiles and trains have trend to be more intelligent. In this
respect, sensors will get self-powered and real-time for information
transmission when applied with nanogenerators. On the other hand,
bicycles can be taken into consideration as an important factor in urban
intelligent transportation network when combined with nanogenera-
tors, improving safety of both bicycle riders and other drivers. Because
the state of bicycles can be monitored in real time and alerts others for
accident prevention.

2.2. Water transport vehicles

Similar to automobiles and trains, vessels are driven by big power
source while their small distributed sensors need continuous but small
power. Furthermore, vessels are special because the environment of
water is terribly destructive for cable power supply, but contains a lot of
energy at the same time. Zhao et al. presented a solid-liquid interfacing
TENG to convert random water wave energy into electricity [123]. The
structure design can be seen in Fig. 5a. The electrodes were connected
with anode and cathode by p-n junctions. So the output was direct
current (DC) rather than alternating current (AC), which made rectifier
unnecessary. The area of 100× 70mm2 could generate short-circuit
current of 13.5 μA and peak power of 1.03mWat a water wave height
of 12 cm. By investigating the relationship between output and water
wave type, the authors found that TENG could harvest the energy from
random and dynamic water wave with a rough water level and smooth
water wave with an almost linear water level very well at the same
time. Finally, a 22 μF capacitor was charged to 5.8 V within 67s. After a
wireless transmitter triggered, the voltage dropped to 1.4 V. And then,
it was charged for another transmission for only 53s. Moreover, solid-
liquid interfacing TENG can be also utilized as a robust and sensitive
indicator for detecting the water level [124], which is self-powered,
robust, and accurate for extensive applications in marine industry.

The complex environment of water has not only energy, but also
many microbes. They are harmful to the parts of vessels underwater,
block pipes, and even boost engine stress. Instead of coating materials
to protect, Long et al. used surface electric disturbance by TENG to
realize the effect of anti-biofouling [125] as shown in Fig. 5b. Similarly,
Zhao et al. investigated oscillation of electric potential for antifouling
on insulating surface [126]. Also, TENGs are the best choice for the
ability to harvest water wave energy. In this work, rectifying chips were
added in the TENG. Thus, the output part could be separated into anode
and cathode, as shown in Fig. 5c. As a contrast, the anode and cathode
were being submerged in the culture solution with a high concentration
of E. coli for 24 h. As a result, the anti-adhesion efficiencies reached up
to 99.6% and 99.3%, respectively. However, external DC (3 V) and AC
(110 V) could only give the anti-adhesion efficiencies of 83.9% and
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95.5%, respectively, demonstrating the superiority of TENGs. In the
same way, the anti-adhesion efficiency against Nitzschia Sp. was proved
as high as 94.6%. Moreover, investigating the effect of surface rough-
ness showed that roughened surface with micro or nano structures had
a further 75% enhancement on anti-adhesion. This work has more
comparison and detailed data, fully demonstrating its potential for in-
telligent vessel in Antifouling.

Despite of microbes, water can easily corrode steels, which are basic
materials for vessels. Feng et al. presented a paper-based TENG for self-
powered anticorrosion. In this work, paper and PVDF acted as tribo-
electric materials [127]. After modification of paper by polydopamine,
the short-circuit current and open-circuit voltage could reach up to
30 μA and 1000 V, respectively. And the charge density increased ob-
viously to 76 μCm−2 from 24 μCm−2. As can be seen in Fig 5d, a piece
of A3 steel of 0.7× 0.7 cm2 and carbon electrode were connected to
TENG through a rectifier bridge and capacitor of 1.2 μF. To imitate the
seawater corrosion condition, 3.5% NaCl aqueous solution was added.
Then the TENG started to work. As time goes by, the surface of steel
with TENG protection had little change, while the steel without pro-
tection was corroded badly. On the other hand, an investigation of
antifouling showed it had good antifouling properties for both duna-
liella and navicula. Guo et al. also demonstrated excellent metal cor-
rosion prevention effect by TENGs [128,129]. Subsequently, the work
in NaCl solution by Chen et al. revealed the electrochemical process by
TENG [130]. Hence, TENGs are great for antifouling and no external
power is needed. This self-powered device makes vessels smart, pro-
moting the intelligent development of water transport vehicles.

Vessels, as water transport vehicles, are special among the transport
vehicles, which are pretty suitable for self-powered technology, because
of the environment of water. On one hand, self-powered device can be
wireless both in signal transmission and power supply, leading to no
damage to the electrical power system of vessels when they are de-
stroyed by water. On the other hand, the energy in water is abundant
and easy to be harvested by TENGs. Apart from energy harvesting,
TENGs' property of high voltage has excellent anti-biofouling and an-
ticorrosion effect exactly. It's a self-powered technology with high ef-
ficiency and no danger, paving a way to water transport vehicle in-
telligent protection.

2.3. Air transport vehicles

Aircrafts usually run in the upper air, where the wind has fast speed,
high stability, and perenniality [131]. The abundant wind energy is
difficult for traditional wind turbine generators. To solve this problem,
Zhao et al. developed a freestanding flag-type TENG for wind energy
harvesting [132]. As shown in Fig. 6a, the Kapton film-sandwiched Cu
belts and Ni belts with gaps between them consisted a contact-separate
TENG. At a wind speed of 22m/s, the open-circuit voltage and short-
circuit current could reach up to ~40 V and ~30 μA, respectively. And
the output peak power density of 135mW/kg were tested at 6.5MΩ. In
addition, the output rose with the increasing wind speed, according to
the research. For the ultimate purpose of powering electronics, a ca-
pacitor of 4.7 μF was charged to 8.1 V by three TENGs in parallel within
about 10s, demonstrating the charge ability. Because of its freestanding

Fig. 5. TENG works on the water for energy harvesting and anti-corrosion. (a) The designed TENG with DC output is used to harvest wave energy for powering a
wireless signal transmitter [123].
(b) The water-driven anti-biofouling system by TENG at the shore of lake [125].
(c) The anti-adhesion system setup by TENG with p-n junction [126].
(d) The system of cathodic protection powered by TENG [127].
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2D design, any directions of wind energy could be harvested without
obvious difference in output current. It's a big advantage for wind en-
ergy harvester. Finally, the authors designed a demo for harvesting
high-altitude wind energy to power wireless sensor node. The wireless
sensor was powered and transmitted signals to computer. And the
condition of temperature and humidity could be measured. With the
help of nanogenerators, the traditional balloon has small electrical
power source and can transmit signals, exhibiting the first step to in-
telligent development. We can imagine a balloon carrying people with
the TENG flag. If there's an accident, the electric energy can be used for
emergency help.

Anton et al. investigated the possibility of harvesting vibration en-
ergy in the unmanned aerial vehicle (UAV) [133]. Usually, airplanes
have higher speed rather than balloons, resulting in impossibility for
the TENG flag. What's more, drag reducing is the priority in airplane
engineering. On the other hand, vibration exists when airplanes are
flying, which is bad for safety but good to be harvested exactly. In this
work, the wing spar and fuselage were made by fiberglass, as the demo.
Piezoelectric fiber composite (PFC) was placed on the wing, as shown in
Fig. 6b. When there was vibration, the wing and the tightly attached
PFC had deformation and electricity could be generated. PFC was also
designed as cantilever structure in the fuselage, because the fuselage
had vibration but little deformation. It's a classical solution to solve this
kind of problems in the field of energy harvesting. As a result, the
average power output of the cantilever PFC and the PFC attached to the
wing was calculated as 24.0 μW and 10.1 μW, respectively. In addition,
EH300 energy harvesting chip was applied for power management. The
result showed that during a 13min flight, the piezoelectric patches
charged the EH300 4.6mJ internal capacitor to 70% capacity. Although
this work is only for UAV, energy harvesting shows great potential for
all kinds of airplanes, which can be improved to be more intelligent and
safer. Le et al. summarized energy harvesting for structural health
monitoring in aeronautical applications, fully demonstrating the pos-
sibility and advantages of self-powered technology [134].

Although there's no practical application on real aircrafts, the pre-
vious studies have demonstrated the great possibility to harvest wind
and vibration energy. As a matter of fact, turbine blades are desperately
in need of real-time monitoring but it's unreachable for traditional cable
power supply and signal transmission. Based on advanced TENGs [135]
and PENGs [136] in high-temperature environment, the in-
tellectualization of airplane critical component will come true soon.

3. Nanogenerators for intelligent roads

Roads are the support for vehicles. Hence, the condition of roads
directly affects the driving safety. Although intelligent roads, aimed at
improving the safety and convenience of driving, have a rapid devel-
opment, the cost is staggering. What's more, some special roads, such as
bridges and tunnels, still need further intelligent development. In this
regard, nanogenerators can contribute significantly in the field of real-
time sensors and reduce the cost for future intelligent improvement.
Here, we introduced some kinds of roads combined with nanogenera-
tors for intellectualization.

3.1. Land roads

3.1.1. Bridges
Bridges make pedestrians, automobiles and trains span physical

obstacles, leading to time saving and economic benefit. Usually, the
physical obstacles are dangerous, such as water, and valley. Therefore,
the bridge safety matters a lot to driving safety. However, the tradi-
tional manual detection method increases the risk of workers owing to
the dangerous environment when compared with real-time monitoring.
It brings us to another problem that the limit power source of real-time
sensors. Here, nanogenerators give us a fantastic solution by self-pow-
ered technology. In 2012, Pan et al. presented an optical fiber-based 3D
hybrid cell (HC), including dye-sensitized solar cell (DSSC) and a PENG
[137]. As a demo, HC was applied beneath the bridge with a diameter
of 500 μm and a length of 2 cm, delivering 7.65 μA and 3.3 V, as can be
seen in Fig. 7a. Detailedly, DSSC consisted of optical fiber, seed layer,
dye-coated ZnO NWs and electrolyte, as a solar energy harvester. Sun
light could enter the optical fiber and reflect inside for many times.
Then, it could be harvested as the working principle of Fig. 7b.

Maruccio et al. applied PVDF nanofibers for structural health
monitoring of a cable-stayed bridge [138]. Only polar β-phase showed
piezoelectricity rather than non-polar α-phase (Fig. 7c). The authors
presented a device by PVDF with opposite polarities tactfully, resulting
in enhancement of output. After analysis, 6 identified modes of the
bridge deck were applied. With regard to output, different cables with
horizontal and vertical direction were different. With the length of
30mm, width of 10mm, tip-mass of 25 g, and resistance of 10 kΩ, the
device can deliver electric energy of 1.217mJ could be obtained from
central cable in horizontal direction, which was the highest. While the
longest cable in horizontal direction could only generate 0.014mJ. In
addition, the test time is 50 s. At the same time, the output of PVDF film

Fig. 6. Energy harvesting application on balloon and unmanned aerial vehicles. (a) The fabricated TENG including nickel and Kapton is used to harvest energy for
wireless sensor node [132].
(b) Vibration energy harvester by piezoelectric patch placed on wing and in the fuselage [179].
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was also measured. It's worth noting that the output of PVDF nanofibers
were almost double that of PVDF film at the same condition. This result
fully proves the excellent performance of nano materials. In this regard,
nanogenerators have significant advantages.

Despite of harvesting energy, nanogenerators show good perfor-
mance as an active sensor [117,139]. Especially, TENGs have high
voltage output owing to the unique working principle. Yu et al. utilized
TENG as an accelerometer to monitor the health of bridge [140]. As
shown in Fig. 7d, it was a free-standing TENG consisting of copper and
Fluorinated Ethylene Propylene (FEP). Silicon rubber was highly
stretchable for movement of FEP and all the parts were covered in an
acrylic tube. Firstly, the relationship between open-circuit voltage of
the two electrodes and motion displacement of inertial mass was proved
linear, which is basic for quantitative sensing parameters. For more
visualization, a dynamic displacement monitoring software interface
was developed by LabVIEW 2016, showing the value of sampling rate,
the curves of collected acceleration, estimated displacement and re-
ference displacement. It's intelligent that an alarm signal will be given if
the displacement is continuously above the threshold. As a sensor, it
had a high sensitivity of 0.391 V s2 m−1. What's more, the relationship
between output and acceleration was linear with a correlation coeffi-
cient of 0.975. Finally, the authors compared proposed TENG with a
commercial piezoelectric acceleration sensor. The result demonstrated
the excellent performance in low vibration frequency. So nanogenera-
tors are not only a kind of good energy harvester, but also an excellent
active sensor.

Intelligent monitoring is the core emphasis of intelligent bridges.
And possibility of harvesting energy for sensors power on bridge is fully
demonstrated by previous studies. In this condition, self-powered
sensor is the appealing strategy to assess the state of bridges, leading to
scalability, minimum interference and real-time monitoring. It's a sig-
nificant step on intelligent development of bridge. Meanwhile, TENGs
have a sharp sense in vibration monitoring.

3.1.2. Tunnels
Tunnels are shortcut to cross a high mountain by puncturing it. Also

some tunnels are underground in cities to reduce traffic congestion.
However, it's dark in the tunnel and the mechanical structure needs to
be detected. What's worse, many tunnels are constructed in desolate
places, increasing the difficulty for detection and power supply. Zhang
et al. reported a self-powered active wireless traffic volume sensor by
using a rotating-disk-based hybridized nanogenerator [141]. The hy-
bridized nanogenerator was made by two parts, a single-electrode
TENG and an EMG, which provided power for wireless traffic volume
sensing system, as shown in Fig. 8a. As the same with enhancement by
other studies [142,143], nanowires were processed on surface of PTFE
for TENG by reactive ion etching. In addition, nanopores were created
on the surface of aluminum triboelectric layer for more contact area. As
a power source, the TENG part could provide instantaneous peak power
density of 10.8W/m3 at a load resistance of 50MΩ, while a volume
output power density of 51.5W/m3 could be obtained at 400MΩ from
EMG part. After power management consisting of transformer and
rectifier, the hybrid nanogenerator could power the wireless transmitter
and the receiver showed the number of passing vehicles. In this work,
the energy is from wind when vehicles pass by. And the tunnel is re-
latively closed. This kind of detection method is fit for tunnels, because
the wind energy from passing vehicles is strong and the external effect
is small.

Aimed at the great demand for electricity in the manmade long
tunnels, Bian et al. proposed a bionic TENG tree (Fig. 8b) [144]. The
TENG tree had two parts, leaf cell and stem cell. And the leaf-TENG had
an elliptical shape like a natural leaf. When there is wind, the leaves
will contact and separate, which can generate electricity. The stem-
TENG has a structure of column encased in four soft slats like a stem.
When there is wind, the soft slats will deform, resulting in contacting
and separating with core. Thus, electricity can be obtained. At the wind
speed of 17m/s, leaf-TENG had open-circuit voltage of 260 V and short-
circuit current of 37 μA, while stem-TENG had open-circuit voltage of

Fig. 7. Self-powered bridge system based on nanogenerator. (a) Bridge as a demonstration for the self-powered nanosystem by hybrid cell, including a solar cell and
ZnO NWs based PENG. (b) Working principle diagram of the solar cell and PENG [137].(c) Bimorph-structure energy harvester by electrospun PVDF nanofibers is
used for bridge state monitoring [138].
(d) The typical free-standing mode of TENG as an accelerometer for dynamic bridge vibration monitoring system [140].
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320 V and short-circuit current of 26 μA. By rectification, leaf-TENG
and stem-TENG connected in parallel as a TENG tree could generate
voltage of 330 V and current of 59.6 μA. Also, the maximum output
power reached up to 3.6mW at the matched resistance of 60MΩ and
wind speed of 11m/s. As a result, 145 LEDs could be lighted up by
harvesting wind energy. Fig. 8c is the schematic diagram of TENG tree
for advertising illumination in the tunnel. Another work showed a re-
newable low-frequency acoustic energy harvesting noise barrier
(AEHNB) using a Helmholtz resonator [145]. In this work, a PVDF film
was designed as cantilever structure and fixed on a hexagonal prisms
cavity, as shown in Fig. 8d. It's worth noting that the tunnel is a rela-
tively closed environment, where the noise is not easy to spread around.
The noise is a kind of energy and may be harmful to the tunnel. So this
work is foresighted for noise energy harvesting and an important re-
ference for tunnel's related work.

Tunnels are special among land transportations because of the en-
closed environment and desolate building place. According to the pre-
vious studies, this special condition makes it in more need of and more
suitable to self-powered technology. In detail, the enclosed environ-
ment can maintain more wind and noise energy for nanogenerators to
harvest, while the desolate building place needs more electricity energy
to power sensors because of the high maintenance cost and risk for
workers.

3.1.3. Highways
Highways are the most common roads in our daily life, supporting

automobiles and bicycles to get around for a short-distance trip.
Intelligent road is a key part of ITS, leading to safety and convenience.
Whereas, electronics in current intelligent road are usually maintained
by people and supplied by cable, leading to increasing economic cost.
Askari et al. proposed a hybridized electromagnetic-triboelectric gen-
erator consisting of TENGs and EMGs for energy harvesting [146]. The
hybridized nanogenerator is designed into a speed bumper. When ve-
hicles passed by, the mechanical load could be transformed into

electricity (Fig. 9a). The detailed structure shows that PTFE film could
move forward and backward between aluminum films, which is a ty-
pical free-standing TENG. On the other hand, EMG could harvest energy
by magnetic flux change of the coil, owing to the movement of magnet.
As a result, the result showed that the better work frequency of TENG
was below 0.5 Hz, while the EMG had a better performance at a fre-
quency over 0.5 Hz. The truth that TENG has a better performance at
low frequency is demonstrated in many studies [147–149]. And the
reason has been explained by Maxwell's displacement current [150].
Finally, the TENG and the EMG were used to charge a capacitor of
40 μF. Here, the advantage of hybrid nanogenerator is fully obvious.
The TENG can charge it to a high voltage but takes a long time, while
the EMG can charge it at a short time but the voltage is low. After
hybridization, the capacitor can be charged to a high voltage and takes
a short time. As a self-powered device, it has great potential for in-
telligent traffic monitoring by providing online traffic information.
With similar application, another work about TENGs for caution system
of vehicle parking is reported by Zhang et al. [151].

Smart sensing system is basic for ITS, and the wind energy induced
by vehicles can act as a power source. In view of TENG's great perfor-
mance in wind energy harvesting, it's a good choice. Wang et al. pre-
sented a smart network node based on hybrid nanogenerator [152]. The
hybrid nanogenerator could harvest wind energy by flag-like TENGs
and solar energy by a solar cell. The schematic can be seen in Fig. 9b.
What's more, the relationship between output and wind speed was
fitted linearly, which had potential for wind speed sensing. The solar
cell had a continuous voltage output but low, while it was high for
TENG but intermittent. Therefore, the hybrid device had much higher
output after combining them. And a Li-ion battery of 10mAh was
charged by it to 2.7 V within only 540s. A wireless sensor could
transmit signals by using the electricity harvested from the hybrid na-
nogenerator and a station could receive the signals elsewhere. In this
work, the sensor was to monitor the temperature and a computer could
receive the data by ZigBee module.

Fig. 8. Potential and application on tunnel as a sensor or energy harvester. (a) The wireless traffic volume sensing system by a TENG and an EMG [141].
(b) Diagram of TENG tree with leaf-TENG and stem-TENG. (c) Schematic diagram of TENG tree applied in the tunnel to power the advertising illumination [144].
(d) An energy harvesting unit including the Helmholtz resonator with PVDF film and its application to harvest acoustic energy by running high-speed train [145].

L. Jin, et al. Nano Energy 66 (2019) 104086

9



Vehicle speed monitoring on road is a key part of transportation
system. Intelligent traffic monitoring relieves the road side traffic po-
lice. However, commercial speed measurement techniques are usually
expensive and difficult to maintain. With this regard, the TENG is a
good choice to solve this problem. Different from wind driven, a low-
cost triboelectric sensor was presented by Yadav et al. [153] As shown
in Fig. 9c, TENG had a single electrode mode with PTFE and aluminum
as triboelectric materials. The result showed the accuracy was over 95%
for vehicle speed measurement. After all, it's just a prototype, because
many factors may affect the output of TENG, such as temperature and
humidity. And this mode is more effective for low-speed vehicles which
cannot generate strong wind.

Although TENGs have great performance, PENGs contribute to
transportation more early. In 2012, Lin et al. firstly utilized PENG by
ZnO NWs to monitor transportation state [154]. The device was
transparent owing to the transparent Indium Tin Oxides (ITO) electrode
and the thin ZnO film (Fig. 9d). The device was robust enough to be
compressed by vehicle tire, which delivered output of 10 V. On the
other hand, it's also a process of monitoring. By placing two nanogen-
erators along the road with a certain distance (e.g. 0.6m), the speed of
vehicle could be calculated from the peak of signals (Fig. 9e). The ve-
hicle speed from 1 to 4m/s could lead to different time differences
between two crests. Theoretically, the detection range is related to the
sampling rate of the measurement system and the distance between the
two nanogenerator devices. But the sample rate was 500 s−1 and dis-
tance was 0.6 m in this work, the detection limit was about 300m/s,
which is high enough. So this kind of device has wide speed monitoring
application.

Intelligent development of highway is improved rapidly owing to its
high use frequency. But self-powered technology by advanced

nanogenerators dramatically reduces the human and construction cost.
On the other hand, the sensors by nanogenerators with high sensitivity
consumedly enhances the safety.

3.1.4. Tracks
Railway transportation is low-cost and rapid for a long trip. But

trains have to run on the track. So tracks are the basic and matter a lot
for railway transportation. It's a common sense that train has a high
speed, and it's developed higher and higher in recent years [155,156],
which brings intense vibration [113]. Vibration widely exists on the
track, and usually brings damage to the track [157,158]. So it's a double
benefit to harvest vibration energy for sensors. Li et al. proposed a wide
band piezoelectric energy harvester using commercial PZT [159]. This
work aims at expanding the working frequency limitation of cantilever
beams. By adjusting the length of cantilever beam, it was demonstrated
different length can change the optimum working frequency (Fig. 10a).

As a novel vibration energy harvester, using TENGs is ideal for track
energy harvesting. Zhao et al. applied a typical contact-separate mode
TENG as vibration accelerometer and energy harvester [160]. As can be
seen in Fig. 10b, TENG was supported by springs. The authors stimu-
lated and got the proper gap of 440 μm for effective contact of the two
triboelectric materials. Then, they tested the performance of TENG. The
result showed that the relationship between peak voltage and frequency
was almost linear at acceleration of 1.25m/s2, which is the proof for
TENGs as frequency sensors. What's more, there was a linear relation-
ship between peak voltage and acceleration at frequency of 4 Hz and
6 Hz, which demonstrated TENGs as good acceleration sensors. The
practical application of this work was to fix the TENG on the platform
and charge lithium battery at 8 Hz and 1.25m/s2. After the process of
150min, lithium battery was charged from 2.4 V to 3.0 V. Furthermore,

Fig. 9. Applications of nanogenerator applied as a sensor or energy harvester in highway. (a) TENG and EMG as a hybrid nanogenerator applied in the speed bumper
[146].
(b) Schematic illustration of hybrid nanogenerator as wind energy harvester for intelligent traffic system [152].
(c) Single-electrode TENGs applied in the highway as sensor to monitor the passing vehicle speed [153].
(d) ZnO NWs based PENG is fixed on the road for automobile tire pressing. (e) The principle of measuring automobile speed by time difference of two PENGs and
analysis of automobile speed. Calculated speed is 1.0, 1.5, 2.7, 4.0 m/s [154].
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the lithium battery could power a wireless sensor to send data. And the
data could be received. It's worth mentioning that this work is first for
TENGs to monitor railway state health. It's the milestone to apply ad-
vanced nanogenerators on self-powered track monitoring. But re-
grettably, the TENG is not designed reasonably to match the special
track structure.

Land roads constitute a large proportion in our daily travelling.
Here, intelligent bridges are firstly introduced by combining with self-
powered technology for real-time monitoring. Then, self-powered
technology applied on the special tunnels as a significant step towards
intelligent development is illustrated. In the next part, although in-
telligent highway is developed rapidly, nanogenerators can dramati-
cally reduce cost. Finally, some studies about track intelligent devel-
opment are referred, stating a truth that more investigation is needed to
match the special track structure.

3.2. Water roads

Water roads need no building or maintain, leading to low-cost
transport. But up to now, water roads are only a lane to many vessels.
Because there's no gas station, rest area or even emergency place. The
main reason is limited energy supply. However, water contains great
energy, including tide, wave, and so on. What's more, compared with
solar energy, water energy can be harvested anytime, regardless of
dark. So how to make use of water energy becomes the key problem. Up

to now, there are many studies based on it [161–165]. Ahmed et al.
designed a duck-shaped TENG with free-standing rolling mode [166].
As depicted in Fig. 11a, free-standing Nylon balls acted as positive
materials, while Kapton film with nano structure (enlarged view) acted
as negative materials. When there was water wave, the duck shape
made the device waggle. Therefore, the Nylon balls rolled and elec-
tricity could be generated.

For more efficiency, TENGs are usually combined with EMGs or
multiple work modes. Wang et al. presented a fully-packaged ship-
shaped nanogenerator as blue energy harvester [167]. Fig. 11b illus-
trates the detailed structure. The contact-separate mode TENG was
driven by magnetic attraction. Because the cylinder with magnet could
roll with water wave. The TENG of free-standing mode was similar with
structure of Fig. 11a. But the movement was one dimensional owing to
the cylinder structure, not balls. EMG part was a common structure of
magnet and coil. The experimental result showed the TENG of contact-
separate mode and the free-standing mode could deliver a maximum
peak power of 850 μW and 165 μW, respectively. And the EMG had
9mW. Benefiting from the multiple work modes, the device had great
performance for seawater electrodialysis as self-desalination system.
The desalination rate was demonstrated as 29.4% in 3 h and 98.5% in
24 h. It may help a lot for workers in emergency. After all, it's designed
mainly for self-powered sensors. The position of destination on the sea
is usually marked and searched when they want to get there. Self-
powered position system can transmit signals proactively without

Fig. 10. Different methods for vibration energy harvesting of track. (a) Photograph of the device with different cantilever beam length for different frequencies
vibration energy harvesting and the experiment test system [180].
(b) Typical contact-separate mode TENG by aluminum and Kapton for railway state health monitoring [160].
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external power source, which was demonstrated. And the corre-
sponding circuit schematic is illustrated. For further prospect, a station
can be set by plenty of nanogenerators, including signal station, light
house, desalination pool and so on, just like the rest area of highway.
What's more, it is self-powered, leading to improvement in intelligent
water transportation.

Wave monitoring is key for marine equipment. In this regard,
TENGs have good performance as active sensors. And many studies
have demonstrated TENG works well at working mode of liquid-solid
contact [168–172]. Xu et al. presented a highly-sensitive wave sensor
based on liquid-solid interfacing TENG [173]. The schematic diagram
could be seen in Fig. 11c. PTFE film acted as negative material while
water, the common liquid, acted as positive material. Another work
explored the liquid-solid interface contact electrification of TENG de-
tailedly [174]. According to Fig. 11 d, the device had a multilayer
structure, leading to a higher power density. And it could generate
electricity no matter how it moved, such as moving up and down,
shaking or rotation. But it showed that up and down movement had a
higher output. To prove the advantage of liquid-solid mode, two kinds
of TENG was compared. The result fully demonstrated that the output
energy per cycle of liquid-solid TENG was almost twice as high as solid-
solid TENG by calculation. The reason could also be concluded as
contact surface. The solid-solid interface had more space than liquid-
solid interface, because of the character of liquid. Another important
element which can affect the output is surface hydrophobicity of PTFE
film. TENG had the highest output in current, voltage and charge when
the surface was super hydrophobic in this work. Finally, the authors
used 18 TENGs as a network to charge a capacitor of 10mF from 0 to
5 V within only about 13min, according to Fig. 11e. And when con-
necting with wireless SOS system, the voltage started to reduce.

Because wireless sensor started to work by consuming power and more
when emitting. This is a very important application, because the self-
powered technology has potential for emergency [175–177].

Water roads are important transportation for people and military,
but the base station for rest and emergency like rest areas in highway
needs further construction, which is the basic for intelligent develop-
ment. The rapid development of blue energy brings possibility to har-
vest large energy. One day, we believe the self-powered unmanned
station can help people have rest or even save their lives in emergency.

4. Summary and perspective

In summary, we have reviewed the progress of nanogenerators for
ITS. On one hand, nanogenerators can harvest vibration, rotation and
wind energy for electronics as power source. On the other hand, they
are highly sensitive sensors. When combined with vehicles, nanogen-
erators with portability and high efficiency are fully demonstrated as
power source to improve components to be self-powered and monitored
in real time. Particularly, TENGs have external exhaust filtration
function and good performance of anti-corrosion owing to the intrinsic
electrostatic charge. As support of vehicles with safety, intelligent roads
may be built with fewer cost when applied with nanogenerators. What's
more, the self-powered technology by nanogenerators indeed promotes
the intelligent development of special roads, such as bridges and tun-
nels. Since the idea of TENG for blue energy harvesting was proposed in
2014 [178], TENG has a rapid development in water wave energy
harvesting owing to its operability in irregular environment and low
frequency. Based on the vast ocean, there is a great chance to build an
unmanned station on the ocean to provide emergency help or supply,
like the rest area on highway.

Fig. 11. TENG with different structure design for water wave energy harvesting and sensing. (a) Duck-shaped TENG with nanostructure modified Kapton for self-
powered monitoring system [166].
(b) The device consisting of contact-separate mode TENG, free-standing TENG and EMG for self-powered position system applied on the sea and the further prospect
of network TENG powering signal station, light house, desalination pool and so on as a rest area like highway [167].
(c) The liquid-solid interface TENG as a wave sensor applied on the sea [173].
(d) The multilayer-structure TENG applied on the water to harvest blue energy. (e) Illustration of wireless SOS system powered by harvested energy of TENG with a
10mF capacitor [174].

L. Jin, et al. Nano Energy 66 (2019) 104086

12



Although nanogenerators indeed promote the intelligent develop-
ment of transportation system, certain challenges remain. (i) The de-
velopment of nanogenerators applied with some vehicle components in
special environments is experiencing a bottleneck because of the lim-
ited performance of nanogenerators in extreme environment. For ex-
ample, traditional TENGs are affected seriously with increasing hu-
midity, limiting the development in water transport vehicles and water
roads. Similarly, the condition of high temperature and high pressure in
turbine blade mainly hinders real-time monitoring technology. Hence,
functional nanogenerators need to be developed further for special
environment demand, such as hydrophobic-treatment TENG and high-
temperature PENG. (ii) More device structures need to be designed to
match the special structures and work conditions of vehicles and roads.
For example, all-metal train wheels are still not monitored in real time.
The main reason is the all-metal structure and special fast work speed in
tracks. So, it's an important research orientation to explore more useful
device structures. (iii) The key stumbling block to commercialization
for nanogenerators is power management and energy storage. In detail,
the existing commercial power management circuit chips can't match
the output of advanced nanogenerators well, especially the TENG's
characteristic of high voltage and low current. On the other hand, it
may reduce the life of commercial batteries or supercapacitors by
charging and discharging at high frequency, which is common in air-
planes and trains. Therefore, investigation with electronic and en-
gineering field is needed to solve this problem.

In brief, the nanogenerator is a new developing field, but has en-
ormous potential in ITS. With studies in this review, it is expected that
nanogenerators can bring revolutionary development to ITS, resulting
in more safety, more efficiency and more convenience for national
defense and human's daily life.
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