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ABSTRACT

Polymer solid-state electrolytes (PSSEs) are promising for solving the safety problem of Lithium (Li)
metal batteries (LMBs). However, PSSEs with low modulus in nature are prone to be penetrated by
lithium dendrites, resulting in short circuit of LMBs. Here, we design and prepare piezoelectric BaTiO3
doped polyacrylonitrile (PAN@BTO) quasi-solid-state electrolytes (PQSSEs) by electrostatic spinning
method to suppress dendritic growth. The piezoelectric polymer electrolytes are squeezed by nucleation
and growth processes of Li dendrites, which can generate a piezoelectric electric field to regulate the
deposition of Li* ions and eliminate lithium bud. Consequently, piezoelectric PAN@BTO PQSSEs enables
highly stable Li plating/stripping cycling for over 2 000 h at 0.15 mA/cm? at room temperature (RT, 25 °C).
Also, LiFePO4|PAN@BTOILi full cells demonstrate excellent cycle performance (136.9 mA-h/g and 78%
retention after 600 cycles at 0.5 C) at RT. Moreover, LiFePO4|PAN@BTO|Li battery show extremely high
safety and can still work normally under high-speed impact (2 Hz, ~30 kPa). We construct an in-situ cell
monitoring system and disclose that the mechanism of suppressed lithium dendrite is originated from
the generation of opposite piezoelectric potential and the feedback speed of intermittent piezoelectric
potential signals is extremely fast.

© 2023 The Authors. Published by Elsevier B.V. on behalf of The Chinese Ceramic Society. This is an open

access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Lithium metal is considered as one of the most promising anode
materials due to its high theoretical specific capacity (3860 mA-h/
g) and the lowest electrochemical potential (—3.04 V vs. standard
hydrogen electrode) [1—4]. However, Li metal anode for lithium-
metal batteries (LMBs) still faces notable challenges in practical
application. The main problem is huge volume expansion during
repeated Li* ions plating and stripping cycles on Li anode which
would induce uncontrolled dendrites growth [5—7]. Sharply Li
dendrites growth lead an internal short circuit, flammability and
even an explosive catastrophe in liquid Li-ion batteries (LIBs)
[8—10]. Therefore, it is particularly important to obtain extremely
stable LMBs with high-safety by preventing Li dendrite growth.
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Artificial SEI film, modified composite separator and 3D frame
work have been explored for suppressing dendrite growth in LIBs
by protecting and stabilizing Li metal anode [11—13]. As an alter-
native, solid-state electrolytes (SSEs) can replace organic liquid
electrolyte to solve the safety problem of flammable and explosive
issues [14]. Polymer SSEs (PSSEs) exhibit superior flexibility
compared with inorganic electrolytes and can accommodate to the
volume expansion of Li metal anode. On the other hand, its rela-
tively higher mechanical modulus compared to nonaqueous elec-
trolytes facilitates to inhibit the growth of lithium dendrites.
Therefore, PSSEs are considered to be potential candidates for
practical application in LMBs. However, PSSEs inhibiting lithium
dendrite growth by mechanical barrier do not meet the expecta-
tions of researchers. Li dendrites are prone to penetrate into soft
PSSEs due to the lack of enough high modulus (~6 GPa), leading to
battery failure [15]. For instance, elastic modulus of PEO-based
electrolytes is approximately 2—3 orders of magnitude lower than
that of metallic Li. Therefore, PEO@LITFSI electrolyte is easily
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punctured by Li dendrites after 38 h of polarizing at a low current
density of 0.05 mA/cm? [16]. Therefore, it is still urgent to find some
alternative solutions to the problem of lithium dendrites in PSSEs.

The construction of polymer-based composite electrolytes is a
common strategy to enhance its mechanical strength and ionic
conductivity [17—20]. For instance, Huo et al. designed a sandwich-
type PSSEs by integrating Lig4LasZri4Tage0q2 into polymer, it
enabled stable Li plating/stripping cycling for over 400 h at 0.2 mA/
cm? [21]. Zhang et al. proposed a novel low-enthalpy and high-
entropy PEO-based electrolyte by introducing perovskite quan-
tum dots and largely breaking the polymer chain to realize highly
cycled (>1 000 h at 0.3 mA/cm?) LMBs [22]. In addition, crosslinked
electrolytes, interface coating, single-ion solid polymer electrolytes
etc. are also developed to inhibit the Li dendrite growth [23—25].
Recently, a novel method of using piezoelectric effect to inhibit the
growth of lithium dendrites has been proposed. Guang et al. used
piezoelectric polarized PVDF film as the diaphragm of liquid
lithium metal battery, which effectively inhibited the growth of
lithium dendrites [26]. However, the method of suppressing
lithium dendrite by piezoelectric effect still faces some unresolved
problems: (1) the research on piezoelectric effect regulating Li™ ion
deposition is mainly in liquid batteries while there is rarely report
in solid-state batteries [27], such as how to regulate the lithium ion
deposition; (2) the exact piezoelectric mechanism influence on the
electrochemical performance of the battery needs to be further
studied. Therefore, it is urgent to develop novel piezoelectric
polymer electrolytes to regulate lithium-ion deposition and study
the underlying mechanism.

Herein, we report piezoelectric PAN@BTO PQSSEs that can
effectively inhibit the growth of lithium dendrites and achieve
uniform platting and stripping of Li" ions. By controlling the di-
rection of piezoelectric potential generation near the metal Li
anode, the influence mechanism of the piezoelectric electric field
on the electrochemical performance of the battery was studied.
When a piezoelectric electrolyte creates a positive electric potential
near the metal Li anode electrode, piezoelectric effect can effec-
tively prevent Li™ ions deposition to the dendrite tip and promote
uniform lithium deposition. As a result, LiPAN@BTO|Li batteries
present stable plating/stripping behavior (>2 000 h under
0.15 mA/cm?). Quasi-solid-state LiFePO4|PAN@BTO|Li achieves
excellent rate performance and cycle stability (136.9 mA-h/g and
78 % retention after 600 cycles at 0.5 C).

2. Experimental
2.1. Chemicals and materials

Polyacrylonitrile powder (PAN, M,, = 150 000, Aladdin), BaTiO3
(Aladdin, China), dimethylformamide (DMF, Sigma-Aldrich), and
1 mol/L lithium hexafluorophosphate (LiPFg)/ethylene carbonate
(EC): dimethylcarbonate (DMC) (Do Do Chem, China) were used
directly after received.

2.2. Preparation of electrospun PAN@BTO membrane

The weight ration of 10% (in mass) BTO powders were dispersed
in the DMF solution by ultrasound for 1 h. Then the PAN powders
(17%, in mass) were added into the mixture with magnetic stirring
at the temperature of 60 °C for 12 h to prepare a homogeneous
electrospinning solution. The prepared spinning solution was
poured into 10 mL plastic syringe with a needle that was connected
to a positive charge for 13 kV. The distance between the tip of
needle and the collection place was set to be 12 cm, and a constant
flow rate of solution was 2 mL/h. The electrospun nanofibers were
collected on aluminum foil. Then the electrospun PAN@BTO

Journal of Materiomics xxx (XxXx) Xxx

membrane was dried under vacuum at 60 °C for 12 h to remove the
residual solvent.

2.3. Preparation of PAN and PAN@BTO composite electrolytes

The nanofiber membranes were processed to several small discs
with a diameter of 22 mm by laser marking, and then transferred
into an argon filled glove box (moisture level <0.000 1%, in volume).
PAN and PAN@BTO membrane were immersed in a liquid electro-
lyte solution of 1 mol/L LiPFg/EC: DMC for about 5 min. Then the
nanofiber membranes filled with liquid electrolyte were placed in
the glove box for 48 h to remove residual liquid electrolyte. PAN and
PAN@BTO electrolytes had an average thickness of 151 um.

2.4. Preparation processes of the PAN@BTO-S and PAN@BTO-P

Electrospinning can produce a fixed polarization direction for
PAN@BTO electrolyte, and PAN@BTO electrolyte was collected on
the tin foil. Therefore, we named the front surface of electrolyte is
the "+" and the back surface (close to the tin foil) is the "-". During
battery assembly, when the front surface ("+") of PAN@BTO elec-
trolyte contacts Li anode, named PAN@BTO-S. On the contrary,
when the close to the tin foil surface ("-") of PAN@BTO electrolyte
contacts Li anode, named PAN@BTO-P.

2.5. Fabrication of sensor patches

In order to manufacture a sensor, the nanofiber membrane was
electroplated by magnetron sputtering (TPR450, China) silver onto
the front and back for 5 min on each side. The membrane with Li
salts used thin stainless steel as electrodes on each side. Then the
nanofiber membrane was sandwiched between two thin carbon
tapes serving as top and bottom electrodes. The polyurethane (PU)
film covered on the device to protect from any external mechanical
damage.

2.6. Characterizations

The material morphology was characterized by field-emission
scanning electron microscope (SEM, JFOF JSM-7800 F) and trans-
mission electron microscope (TEM, JEM-2100 F). EDS mapping was
checked with a JEM-2100 F. To acquire the crystallinity variation of
the materials, X-ray diffraction (XRD) spectra were recorded on a
power X-ray diffraction (PANalytical X'pert, Cu K, 0.154 056 nm).
Fourier transform infrared (FT-IR) spectra were recorded with a
Thermo Fisher company Nicolet iS10 infrared instrument, applying
the reflection and transmission patterns. Electrical signals of
membranes were obtained with a keithley-6514 system electrom-
eter, and signal was collected and analyzed by a data acquisition
card (Ni PCL-6221). XPS conducted on a Thermo Scientific™ K-
Alpha™* spectrometer equipped with a monochromatic Al K, X-
ray source (1486.6 eV) operating at 100 W.

2.7. Electrochemical measurements

The electrochemical properties of the samples were studied
using CR2032-type coin cells. Linear sweep voltammetry (LSV) was
conducted with the Li|PQSSEs|SS (SS: stainless steel) cell at a scan
rate of 10 mV/s from 0 to 6 V (vs. Li*/Li). The electrochemical
impedance spectroscopy (EIS) of the symmetric SS|PQSSEs|SS cell
and full cells were collected on an electrochemical workstation
(CHI660E, Shanghai, China). The amplitude was 5 mV, the fre-
quency ranged from 10° to 1 Hz, and the temperature was
controlled using an environmental chamber (T-HWS-150H, Dong-
guan, China) between ambient temperature and 60 °C. Cyclic
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voltammetry (CV) was conducted with the Li|PQSSEs|LFP cell with
different scanning rates in the voltage range of 2.5—4.2 V. Galva-
nostatic cycling of the Li|PQSSEs|Li symmetric cell was conducted at
a current density of 0.15 mA/cm? (cycled at 25 °C). Both the charge
and discharge times were 0.5 h. The rate capacity and cycling
performance of the PSSEs were evaluated using LFP|PQSSEs|Li all-
solid-state batteries through a computer-controlled battery tester
system (Neware CT2100) at rate of 0.1 C, 0.2 C, 0.5 C, 1.0 C in the
voltage range of 2.5-4.2 V.

2.8. Preparation of in-situ cells

The cell was sealed with Al-plastic film. For simultaneous
monitoring, we designed four tabs for each cell and they can con-
nect with the cathode and anode and hence connect electro-
chemical workstation and 6514 equipment for collecting data.

2.9. Preparation of LiFePOy4 electrodes

LiFePO4 (LFP) electrodes were prepared by a typical procedure.
Simply, dehydrated LFP, Super P, and polyvinylidene fluoride solu-
tion (4% (in mass) in N-methyl pyrrolidone) at a mass ratio of
85:10:5 was mixed with a moderate amount of N-methyl pyrroli-
done under ball-mill stirring at 400 r/min for 4 h. The electrodes
were made by doctor blading on aluminum foil. For drying elec-
trodes, the electrodes were dried under vacuum for 12 h at 120 °C.
After drying, the electrodes were punched into disks with a
diameter of 6 mm prior to use.

3. Results and discussion

Fig. 1 shows the inhibited growth of lithium dendrites in
piezoelectric PAN@BTO PQSSEs. During plating/stripping processes,
dendrite nucleation occurs first at the lithium anode. Then, Li* ions
accumulate and deposit at the nucleation site due to tip effect,
which leads to the formation of lithium dendrites (the left panel of
Fig. 1). Taking into piezoelectric effect into consideration, the stress
originated from the process of dendrite growth would deform the
polarized PAN@BTO PQSSEs, which generated instantaneous posi-
tive and negative charges on the surface of PQSSEs. In this regard,
an internal electric filed was induced by heterocharges. The inter-
nal electric filed can effectively prevent Li* ions from further
deposition to the dendrite tip, which is beneficial to the homoge-
nization of the Li* ion transport flux (the middle panel of Fig. 1).
Therefore, the dendrite growth in the vertical direction is

Li-ion flux
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effectively prevented and lithium dendrite is eliminated in the bud
stage, so that dendrite-free Li-metal solid-state battery with
excellent cycling stability would be anticipated (the right panel of
Fig. 1).

Piezoelectric PAN@BTO films were prepare by electrospinning
as shown in Fig. 2a. Due to strong electric field polarization and
strong tensile effect, the dipoles in PAN@BTO films could be aligned
internally. Through controlling electrospinning parameters like
spinning time and spinning distance, the size and thickness of
PAN@BTO films were adjusted efficiently. A typical PAN@BTO film
with a large area of ~400 cm? was shown in Fig. 2b. Fig. 2¢ presents
an optical image of PAN@BTO film bundles rolled around a cylin-
drical plastic with a diameter of 2.5 mm, indicating its highly
flexible and foldable characteristics. This one-step, large-scale, and
controllable spinning technology of preparing piezoelectric
PAN@BTO film is expected to achieve commercial application.

The microstructures of piezoelectric PAN@BTO films were
characterized by scanning electron microscopy (SEM) (Fig. 2d). The
nanofibers in the PAN@BTO films were interwoven arbitrarily to
form a three-dimensional network structure. Noted that there is no
polymer beads or residual solvents, indicating spinning film pos-
sesses high-quality. Similar to pure PAN film (Fig. S1a), PAN@BTO
show nearly equivalent size and morphology, demonstrating the
addition of BTO do not damage the structure of PAN fiber itself. The
signals of element N in PAN and Ti, Ba, and O in BTO are uniformly
distributed (Fig. S1b), indicating that the BTO nanoparticles were
uniformly dispersed in the composite film without obvious
agglomeration. Through statistical analysis, the average fiber
diameter of PAN@BTO film is 454 nm (Fig. 2e), which is slightly
higher than that of pure PAN film with an average diameter of
449 nm (Fig. S1c). The uniformity of fiber diameter is also slightly
decreased, which may be due to the slightly increased viscosity of
spinning solution caused by the addition of BTO particles. The
transmission electron microscopy (TEM) and SEM images of BTO
particles show that the diameter of most nanoparticles is less than
500 nm (Fig. 2f and Fig. S1d) that are suitable to be embedded into
the PAN fiber tube (Fig. 2g). From X-ray diffraction (XRD) charac-
terization, PAN@BTO films exhibit five extra sharp diffraction peaks
between 10° and 50° (Fig. 2h) that are matched well with pure BTO.

sample (Fig. S2). Particularly, two splitting peaks (002) and
(200) are obviously found in near 45°; they belong to the charac-
teristic peak of tetragonal phase BTO [28,29]. Due to high piezo-
electric coefficient of tetragonal phase BTO and local stress
enhancement of composite film by BTO particles, the synergistic
piezoelectric effect of both BTO particles and PAN would enable
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Fig. 1. Schematically illustrating piezoelectric effect in PAN@BTO electrolytes to realize homogenous Li deposition.
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Fig. 2. Preparation and microstructures of PAN@BTO films. (a) Electrospinning method to produce PAN@BTO film. Optical image of PAN@BTO film (b) in planar, and (c) in foldable
state. (d) SEM images of PAN@BTO film. (e) Diameter distribution histogram of PAN@BTO nanofibers. TEM images of (f) BTO nanoparticls and (g) PAN@BTO nanofibers. (h) XRD

pattern. (i) FTIR spectra of the PAN@BTO film.

piezoelectric PAN@BTO film to have higher electrical output
performance.

Fig. 2i shows the FTIR spectra of the PAN and PAN@BTO films.
The vibration bands at 1 250 cm~! and 1 230 cm™! are corre-
sponded to the zigzag conformation and 31-helical conformation,
respectively. The presence of zigzag conformation indicates PAN
large dipole moment that is good for piezoelectricity [30]. The
content of the planar zigzag conformation can be estimate by Eq. 1

Q =51230/S1250 (1)

where Si30 and Siso are the peak area at 1 230 cm™! and 1
250 cm™ !, respectively. PAN/BTO film has a Q of 0.77, which is lower
than those of pure PAN film (Q = 0.96) (more detailed comparison
can be found in Figs. S3a—b), indicating that the addition of BTO
nanoparticles can promote the transformation of the 3i-helical
conformation to the zigzag conformation. In short, PAN@BTO film
exhibited superior piezoelectric properties than pure PAN film.

To further study the piezoelectric performance of PAN and
PAN@BTO film, the electrical voltage output of the nanofiber sensor
with the PAN and PAN@BTO films was detected by a periodic
impacting/releasing machine. In pressing mode, the cycle output
voltage of pure PAN films is only increased from 0.28 Vto 1.2 V as
the pressure is changed from 1.23 to 11.24 N (Fig. 3a). What is

worse, the voltage sensitivity decreases obviously when the force is
greater than 8 N (Fig. S4a). In contrast, the PAN@BTO films show
higher voltage output performance, especially at lower force. The
cycle output voltage of PAN@BTO films reaches 0.8 V that is 3 times
of pure PAN film under 1.22 N. When the force continues to increase
to 11.06 N, the output voltage of PAN@BTO films exhibits a cycle
voltage output of 1.6 V. Moreover, PAN@BTO films can maintain a
high voltage sensitivity during the period of force from 1.22 to
11.08 N (Fig. S4b). All in all, the addition of BTO can effectively
improve the piezoelectric properties of PAN, indicating that BTO
particles contribute to the production of serrated conformation in
PAN.

Meanwhile, the addition of BTO also improves the mechanical
strength of PAN films (5.2 vs. 3.6 MPa, Fig. 3c). The increase of
Young's modulus is probably due to the clustering effect of BTO and
higher modulus can also enhance the piezoelectric output perfor-
mance of PAN [31]. In order to verify whether the PAN@BTO elec-
trolyte can maintain good piezoelectric output performance after
immersion, we conducted the same test on the piezoelectric sensor
made of dried PAN@BTO electrolyte. The nanofiber sensor showed
the same typical voltage output, which could show a voltage output
close to 1V at5 N (Fig. 3d). Furthermore, PAN@BTO membranes can
exhibit long-term stability over 2 000 dynamic loading cycles
(Fig. 3e), indicating that piezoelectric PAN@BTO electrolytes can be
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Fig. 3. Piezoelectric and mechanical properties of PAN@BTO films. Output voltage of (a) pure PAN and (b) PAN@BTO films under different forces. (c) Representative stress-strain
curves of PAN and PAN@BTO films. (d) The measured voltage signals from the forward and reverse connections of PAN@BTO electrolytes. (e) PAN@BTO films exhibited long-

term stability under continuous force load.

used stably in LMBs.

Various electrochemical measurements were tested to evaluate
the feasibility of PAN@BTO PQSSEs used in LMBs. lonic conductivity,
a crucial parameter in PQSSEs, was first determined. PAN@BTO
electrolyte exhibit higher ionic conductivity at the temperature
ranging from 25 to 60 °C. As shown in Fig. 4a, the ionic conductivity
of PAN@BTO electrolyte (~1.8 x 10~#S/cm) was nearly two orders of
magnitude higher than that of pure PAN electrolyte (~2 x 107¢ S/
cm) at 25 °C (ionic conductivity at different temperatures in
Table S1). The increased ionic conductivity is contributed to faster
Li* ions transport by the reduction of polymer crystal area (X%
from 75.3% decrease to 61.5%, more details was shown in Fig. S5).
The reasons of decreased crystallinity are as follows: (1) the H atom
of hydroxyl group on the surface of BTO nanoparticles form a strong
hydrogen bond with the N atom in PAN during the spinning process
[32]; (2) The presence of BTO nanoparticles can restrict the
movement of the polymer chains. Although the ionic conductivity
is significantly improved, the electrochemical window is almost

similar. The electrochemical window of the electrolyte membranes
was studied by liner sweep voltammogram (LSV) method. During
the voltage range of 2.0—-5.2 V, PAN@BTO and pure PAN exhibit
electrochemical stable window of 4.7 and 4.8 V, respectively, at a
scan rate of 1 mV/s (Fig. 4b). The slight decrease in electrochemical
stable window after introducing BTO could be attributed to the
extra ceramic/polymer interface that would bring in additional
interfacial issue. Meanwhile, the lithium-ion migration number of
PAN@BTO electrolyte was calculated by EIS and dc polarization at
ambient temperature. In Fig. S6, the PAN@BTO electrolyte exhibits
potent ability of lithium ion migration, whose calculated number is
0.54. Desirable transference number can improve the homoge-
neous Lit deposition [33,34].

The piezoelectric PQSSEs deformation through nucleation of
dendrite protrusion to generate positive electric potential, so as to
offset the overpotential caused by tip effect and prevent deposition
of Li* ions to the tip. Theoretically, the direction of the electric filed
generated by the polarized PQSSEs will play a decisive role in the
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Fig. 4. Electrochemical properties of piezoelectric polymer PQSSEs and their-based Li| | Li symmetric batteries. (a) Temperature-dependence ionic conductivity of PAN and
PAN@BTO PQSSEs. (b) LSV of PAN and PAN@BTO PQSSEs. (c) The direction of the polarized electrolyte influences the direction of piezoelectric potential on the growth of lithium
dendrites. (d) The voltage profiles of the two Li || Li symmetric batteries with increased current density. (e) Cycling stability of Li| PAN@BTO-S|Li and Li|PAN@BTO-P|Li batteries at a
current density of 0.15 mA/cm? at 25 °C. (f) Cycling life and corresponding current density of different PQSSEs. Top-view and cross-sectional SEM images of Li anode after cycling

with (g and h) PAN@BTO-P and (i and j) PAN@BTO-S PQSSEs.

growth of lithium dendrites. When the piezoelectric PQSSEs
generate positive charge near the anode, it had the ability to sup-
press the growth of lithium dendrites, named PAN@BTO-S.
Conversely, it is responsible to accelerate the growth of lithium
dendrites when piezoelectric PQSSEs generate negative charge near
the anode, named PAN@BTO-P. Hence, we changed the direction of
the polarized electrolyte placement to achieve the purpose of
controlling the electric potential output direction (more prepara-
tion processes in Fig. S7), focusing on the influence of the piezo-
electric potential direction on the growth of lithium dendrites.

Fig. 4d shows the voltage profiles of the two lithium symmetric
cells with the increased current. Initially, Li|PAN@BTO-P|Li cell
showed a higher polarization voltage at a current density of
0.05 mA/cm?. Furthermore, Li|lPAN@BTO-P|Li cell.

exhibited a serious abnormal overpotential conversion when

the current density gradually increased to 0.15 mA/cm?, which
would lead to battery failure. On the contrary, Li| PAN@BTO-S|Li cell
still showed a small voltage polarization and stable voltage range
even when the current density was largely increased to 0.35 mA/
cm?. Ultimately, Li|PAN@BTO-S|Li battery failed as the current
density increased to a very high current density of 2 mA/cm?. A
similar phenomenon was found on Li|PAN|Li symmetric cell, where
Li|JPAN-S|Li cell exhibited much lower polarization voltage at the
same current density (Fig. S8 and Figs. S9a—b). In addition, Li|
PAN@BTO-S|Li cell presents an excellent stability over 2 000 h
while Li|PAN@BTO-P|Li can cycle only for 50 h at a current density
of 0.15 mA/cm? (Fig. 4e), meaning that the battery has a fast short-
circuit behavior. Similarly, Li|PAN-S|Li battery can stably cycle for
more than 500 h, while the lifetime of Li|PAN-P|Li battery is only
50 h (Fig. S10). The plating/stripping performance of these
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assembled Li|PAN@BTO-S|Li cell were found to be better than those
of polymer-based PSSEs recently reported (Fig. 4f) [35—44].

We also used XPS to discuss the interface compatibility between
PQSSEs with Li anode. After cycling 1000 h of Li|PAN@BTO-S|Li cell,
LiN3, Li;0, LiF and LixPO,F, were found at Li|PAN@BTO-S|Li cell
interface (Fig. S11). The N 1s peak at 403.7 eV and O 1s peak at
530.7 eV corresponded to LiN3 and LiyO (Figs. S11a—b). The SEI
mainly consists of inorganic LiN3 and Li>O which can form a strong
compact and highly conductive passivation layer on the Li anode,
thereby avoiding dendrite formation [45,46]. The O 1s peak
(Fig. S11b) at 533.1 eV and F 1s peak (Fig. S11c) at 686.6 eV corre-
sponded to LiyPOyF,. As is known, LiF can help suppress the pen-
tration of Li dendrites in to PQSSE. LiyPOyF, is as well-known
electrolyte additive that has improved the cycling stabilities of
lithium batteries [47,48]. Therefore, together with LiNs, Li;O, LiF
and LixPOyF; help in stabling the electrolyte/Li interface. Besides,
other components at the interface included: C—O (C 1s peak at
285.2 eV) (Fig. S11d), C=N, C=N-Li* and NO3' (N 1s peak at
399.7 eV, 402.1 eV and 407.2 eV respectively), C=0 (C 1s peak at
289.7 eV, O 1s peak at 531.3 eV) [49]. C—O and C=O0 species are
formed during cycling, indicating that some residual solvent
decomposed. Therefore, piezoelectric effect plays a decisive role in
stabilizing the interface between the PQSSEs and Li anode and
hence suppressing the growth of lithium dendrites.

The morphologies of the lithium metal surface after cycling
were confirmed by SEM characterization. After Li|PAN@BTO-P|Li
battery is short circuited, the removed lithium anode has a rough
surface containing mossy-like dendrite and prominent spherical
dendrites with the maximum thickness of 335 pm (Fig. 4g-h).
However, the lithium anode of Li|PAN@BTO-S|Li battery has a free-
dendrite morphology, and the dense thickness of lithium anode
surface is only 105 um after 1 000 h (Fig. 4i-j). These results
unambiguously indicate that when the piezoelectric electrolyte
generates a positive piezoelectric potential at the dendrite nucle-
ation site, it can greatly inhibit the growth of lithium dendrites,
otherwise it will accelerate the growth and penetration of den-
drites, leading to battery short circuit.

The LFP|PAN@BTO|Li batteries, where LFP is LiFePO4, were
assembled to investigate the electrochemical properties. LFP|
PAN@BTO-S|Li battery showed flat voltage plateaus with unno-
ticeable polarization upon increasing current rates (Fig. 5a). In
contrast, LFP|JPAN@BTO-P|Li battery showed apparent voltage po-
larization and specific capacity degradation (Fig. 5b). LFP|
PAN@BTO-S|Li battery delivered a specific capacity of 151 mA-h/g
in the first cycle at 0.1C (Fig. 5c). At higher current densities of 0.2
and 0.5 C, the battery maintained specific capacity of 141.5 and
136.9 mA-h/g, respectively. Besides, the capacity of the battery
could recover to the similar level of 0.1 C after high-rate cycling. In
contrast, the first cycle specific capacity of LFP|JPAN@BTO-P|Li at
0.1C was only 133.6 mA-h/g; and with the increase of current
density, its capacity is always lower than that of LFP|PAN@BTO-S|Li
battery. The low specific capacity could be attributed that the
negative piezoelectric potential around the anode aggravated the
nonuniformity of the SEI layer, leading to SEI rupture and uneven
Li* ions deposition at the beginning of the battery cycle. LFP|
PAN@BTO-S|Li batteries with positive piezoelectric effect main-
tain 88.2% capacity retention at 0.5C and 300 cycles (Fig. 5d),
indicating good interface stability and compatibility. However, the
capacity of LFP|PAN@BTO-P|Li battery with negative piezoelectric
effect fluctuated sharply in the first 100 cycles. Subsequently, we
shelved the LFP|PAN@BTO-S|Li battery for a month after 300 cycles.
When we tested it again, LFP|[PAN@BTO-S|Li battery still had an
initial capacity of 98.4 mA-h/g at 0.5C. After 50 cycles, the battery
capacity restored to 120.7 mA-h/g, which had an equal capacity to
the battery (122.5 mA-h/g) before shelving. Finally, LFP|PAN@BTO-
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S|Li battery maintain 78% capacity retention (106.7 mA-h/g) at 0.5C
after 600 cycles. The cycling performance of LFP|PAN@BTO-S|Li cell
was found to be better than those of polymer-based PSSEs recently
reported (Table S2)

In order to prove the safety performance of the LFP|PAN@BTO-S]|
Li battery, we applied a pressure with a frequency of 2 Hz and
~30 kPa to hit the cell continuously for 1 h (Fig. 5e). The recorded
variation of battery voltage was shown in Fig. 5f. During charging
process, the battery voltage suddenly changed at the moment as
the initial force was applied, then the voltage of the lithium metal
solid state battery returned to stability in the subsequent charging
process. Although the battery voltage fluctuates increased strongly
during the last impact, the whole charging process can still be
completed. In the discharge process, under the external impact, the
battery voltage had always tended to be stable finally. Impressively,
it can deliver a specific capacity of.

126.9 mA-h/g at 0.5C, and the subsequent charging/discharging
curves remain normal (Fig. S12). However, after the impact, the
voltage of ordinary commercial liquid batteries fluctuated violently
during the charging process, and soon reached the upper set limit
of 4.2 V (Fig. 5g), which eventually led to battery failure. This result
proves that the LFP|PAN@BTO-S|Li battery has high safety and can
still work normally under high-speed impact. Therefore, as the
piezoelectric PAN@BTO-S PQSSEs generate positive charge near the
anode, it could enable Li metal battery extreme stability as sum-
marized in Fig. 5h.

To disclose the work mechanism of piezoelectric effect on sup-
pressing the lithium dendrites, we further prepared in-situ cells to
simultaneously monitor the piezoelectricity and electrochemical
performance. Fig. 6a schematically illustrates the structure of in-
situ monitoring system. The different charge/discharge behavior
of LFP|PAN@BTO-S|Li and LFP|PAN@BTO-P|Li cells was further
analyzed by cyclic voltammetry (CV, Fig. 6b-c). The same anodic
peak voltages (3.65 V) corresponding to
LiFePO4 = Li;_xFePO,4 + xLit 4+ xe~1 in CV curves are observed in
two cells. Noted that a shoulder CV peak appears in LFP|PAN@BTO-
P|Li cell, indicating the negative piezoelectric potential field would
generate a hindrance of preventing the Lit ions deintercalation
from LiFePO4 electrode. This phenomenon is interesting while
abnormal. It may lead to the formation of cathode electrolyte
interphase and deteriorate the stability of LFP|PAN@BTO-P|Li cell.
However, the exact mechanism for this abnormal behavior needs
further investigation. In addition, the anodic and cathodic peaks of
LFP|PAN@BTO-S|Li cell show a high symmetric overlap, indicating
its excellent reversibility [50]. However, the anodic peaks area are
far below cathodic peaks of LFP|PAN@BTO-P|Li cell, suggesting that
the presence of an uneven solid-state interface induce hard for Li™
ions to plat/strip [51].

Moreover, the electrochemical workstation was used to apply a
constant current of 0.1 mA/cm? to the in-situ battery, so that Li*
ions were continuously deposited in Li metal anode. LFP|PAN@BTO-
P|Li voltage profile of the battery is recorded through 6514 equip-
ment. In the process of Lit ions deposition, the nucleation and
formation of lithium buds at the Li anode led to the deformation of
the piezoelectric electrolyte and produced an instantaneous po-
tential, which was successfully recorded by 6514 as shown in
Fig. 6d. The generation of periodically piezoelectric signals imply
that in the process of dendrite suppression, the dendrite growth is
immediately suppressed after the potential generation. Moreover,
the feedback speed is extremely fast, so regular intermittent
piezoelectric potential signals can be displayed.

EIS plots of LFP|PAN@BTO|Li battery were tested to further study
the interface between PAN@BTO electrolyte and electrode during
cycling. The initial impedances of LFP|PAN@BTO-S|Li and LFP|
PAN@BTO-P|Li batteries after assembly had little difference,
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Fig. 5. Electrochemical and mechanochemical properties of LFP|PAN@BTO|Li batteries. Charge/discharge profiles of (a) LFP|[PAN@BTO-S|Li and (b) LFP|JPAN@BTO-P|Li cells at current
rates from 0.1Cto 1 C (1 C =170 mA-h/g. (c) Rate-capability of cells at various current rates. (d) Long-term cycling stability of the LFP|PAN@BTO-S|Li cell with a potential of 2.5-4.2 V
at 0.5C and the corresponding Coulombic efficiency. (e) The voltage profiles of (f) LFP|PAN@BTO-S|Li and (g) Commercial liquid battery hit by a continuously external force with a
frequency of 2 Hz and ~30 kPa for 1 h. (h) The summary of different typed piezoelectric PQSSEs constructed LMBs and their electrochemical properties.

which were 980 Q and 1 050 Q respectively (Fig. 6e). After the first
cycle, the interface resistance of battery assembled with sand-
wiched LFP|PAN@BTO-S|Li rapidly decreased to 180 Q, while that of
LFP|PAN@BTO-P|Li battery only decreased to 680 Q (Fig. 6f). For-
mation of SEI was conducive to increase the interface compatibility

after the first cycle of the battery [52]. Meanwhile, LFP|PAN@BTO-S|
Li battery helps to form a more compact SEI layer that greatly re-
duces the charge transfer resistance (Rct). With the increase of
cycles, the interface impedance of LFP|PAN@BTO|Li battery further
decreased as shown in Fig. 6g-h. After 100 cycles, the Rct of LFP|
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Fig. 6. Mechanism of piezoelectric effect stabilizes LMBs. (a) Designed in-situ system to monitor piezoelectricity and electrochemical properties simultaneously. CV curves of (b)
LFP|PAN@BTO-S|Li and (c) LFP|PAN@BTO-P|Li batteries at a scanning rate of 0.1 mV/s. (d) Voltage profile of the in-situ cell. (e—j) EIS plots of LFP|[PAN@BTO-S|Li and LFP|PAN@BTO-P|

Li batteries during cycling.

PAN@BTO-S|Li and LFP|PAN@BTO-P|Li batteries decreased to 61 Q
and 116 Q (Fig. 6i), respectively. After 300 cycles, LFP|PAN@BTO-S|Li
battery only delivers a rather low Rt of 52 Q (Fig. 6j). These results
further confirm that LFP|PAN@BTO-S|Li battery possesses good
interfacial stability and superior compatibility against electrodes,
which ascribed to the positive potential generated by piezoelectric
effect is conducive to the formation of compact SEI layer and pre-
vents the growth of lithium dendrites.

4. Conclusion

In conclusion, we designed piezoelectric PAN@BTO PQSSEs for
suppressing lithium dendrite growth and stabilize lithium metal
surface to build extremely stable lithium metal battery. This
piezoelectric effect could enhance uniform deposition of Lit ions in
Li metal anode and eliminate Li bud. Therefore, the outstanding

electrochemical performance of all-solid-state LMBs were ach-
ieved. Li|PAN@BTO-S|Li symmetric battery exhibited outstanding
electrochemical stability (>2 000 h under 0.15 mA/cm?) and
LiFePO4|PAN@BTO-S|Li full cell achieves a specific capacity of
136.9 mA h/g at 0.5 C with high-capacity retention of 78% after 600
cycles. Moreover, the mechanism of piezoelectric electric field di-
rection on suppressing dendrites growth is further disclosed.
Piezoelectric PQSSEs generate positive charge near the anode, it can
effectively suppress dendrites growth. Particular, the reason of
enable Li metal battery extremely stable was comprehensively
proved to be originated from piezoelectric effect of PQSSEs. This
work provides a promising strategy to design piezoelectric polymer
electrolyte for developing long-stable and high-safety lithium
metal batteries.
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