首页
最新动态 交流合作 科研项目 论文著作 精彩瞬间 招生招聘
  • 【Adv Mater】Erasable, Rewritable, And Reprogrammable Dual Information Encryption Based on Photoluminescent Supramolecular Host‐Guest Recognition And Hydrogel Shape Memory
  • 来源:付俊教授个人网站 2023-07-15
  • Information encryption technologies are very important for security, health, commodity, and communications, etc. Novel information encryption mechanisms and materials are desired to achieve multi-mode and re-programmable encryption. Here, we demonstrate a supramolecular strategy to achieve multi-modal, erasable, reprogrammable, and reusable information encryption by reversibly modulating fluorescence. A butyl-naphthalimide with flexible ethylenediamine functionalized β-cyclodextrin (N-CD) is utilized as fluorescent responsive ink for printing or patterning information on polymer brushes with dangling adamantane group grafted on responsive hydrogels. The photoluminescent naphthalimide moiety is bonded to β-CD and entrapped in the cavity. Its fluorescence is highly weakened in β-CD cavity and recovers after being expelled from the cavity by a competing guest molecule to emit bright green photoluminescence under UV. Experiments and theoretical calculations suggest π-π stacking and ICT as the primary mechanism for the naphthalimides assembly and fluorescence, which can be quenched through insertion of conjugated molecules and recover by removing the insert. Such reversible quenching and recovering are used to achieve repeated writing, erasing, and re-writing of information. We further combine supramolecular recognition and hydrogel shape memory to achieve reversible dual-encryption. This study provides a novel strategy to develop smart materials with improved information security for broad applications.


    https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202301300

  • [来源:中国聚合物网]
  • 了解更多请进入: 付俊教授个人网站
相关新闻
  • · 【Chem Eng J】4D printing of biomimetic anisotropic self-sensing hydrogel actuators
  • · 【Mater Horiz】3D Printed Microstructured Ultra-Sensitive Pressure Sensors Based on Microgel-Reinforced Double Network Hydrogels for Biomechanical Applications
  • · 【J Mater Chem B】Supramolecular assemblies of multifunctional microgels for biomedical applications
  • · 【Adv Mater】Printable Thermochromic Hydrogel-Based Smart Window for All-Weather Building Temperature Regulation in Diverse Climates

关于我们  |  联系我们  

网站:中国聚合物网

polymer.cn Copyright ©2017