复合材料
当前位置: 首页 >> 资讯 >> 复合材料 >> 行业动态 >> 正文
三维编织复合材料研究现状及应用
2018-05-17 来源:今日头条 点击
关键词:三维编织复合材料

  三维编织复合材料是利用编织技术,把经向、纬向及法向的纤维束(或纱线)编织成一个整体,即为预成型结构件(简称“预制体”),然后以预制体作为增强材料进行树脂浸渍固化而形成的复合材料结构。由于增强纤维在三维空间多向分布,阻止或减缓了冲击载荷作用下复合材料层间裂纹的扩展,使得复合材料层间性能大大提升。因此,三维编织复合材料较普通层合复合材料具有更高的冲击损伤容限和断裂韧性。三维编织技术可按实际需要设计纤维数量,整体织造复杂形状的零部件和一次完成组合件,减少二次加工量,如加筋壳、开孔结构的制造等,因而经济性好、成本低、制造周期短。此外,三维编织复合材料可适用于各种复杂几何形状的织造,稳定性和整体性高,可设计性强,可通过改变编织方式、编织角、纱线密度等参数满足某些特定的工程需求。基于以上各种优势,三维编织复合材料得到了迅速的发展,并且受到工程界的普遍关注。

一、细观模型的研究进展

  三维编织复合材料细观结构的研究始于20世纪80年代初,比如Ko和Pastore的单胞织物几何模型(FGM),Ma和Yang的“米”字型单胞模型以及Yang提出的“纤维倾斜模型”,这些都属于简单的等效理论的范畴。

  20世纪90年代以后,数值仿真能力得到大大提高,人们开始对三维编织复合材料的成型、编织程序、纱线在编织过程中的走向等进行更深入、完善的研究。Du和Ko在单胞理论的基础上研究了编织参数与三维编织复合材料的纤维编织角及纤维体积含量之间的关系。Sun[2]将数字化方法成功地用于研究复杂微观结构的三维编织矩形预成型体,准确地分析了纱线相互作用和横截面的变形情况,并对比了拓扑模型和数字化方法预测材料微结构的差异,在此2种模型的基础上运用体积平均法计算了三维矩形编织复合材料的抗拉刚度,剪切刚度和泊松比等力学性能,用拓扑模型计算得来的抗拉刚度,剪切刚度值均低于数字化方法,泊松比的值则较为近似。

  在国内,吴德隆首先提出了由基元、面元和柱元组成的三胞模型,三胞模型自此开始发展并且被广泛采用和深入研究。韩其睿等在大量实验数据的基础上,提出了一种新的单元体模型,考虑了纤维的宏观尺寸,即纤维束的横截面为圆形,在相互挤压变形为椭圆。给出了单元体模型的尺寸与纤维束半径、纤维取向角等有关参数之间的相互联系。庞宝君等研究并提出了修正的三维四向编织复材单胞模型,并从细观结构角度对此模型进行了验证。Chen[6]基于小参数逐渐均匀化理论,采用以胞体为基础的数字化有限元分析法(DCB-FEM)建立了三维四向编织复合材料的力学分析模型,计算出其等效弹性参数,与实验一致性高。为三维四向编织复合材料的技术参数选择、性能设计和结构优化提供了一种可行的新方法。

  三维编织复合材料的细观结构的分析经历了取向平均单胞模型、“米”字枝状模型、纤维倾斜模型、三胞模型以及加权平均模型等由简单的单胞到复杂的多胞体模型的发展历程,不断改进的理论使得细观结构的模拟更加贴近实际。

  由于三维编织复合材料的性能受编织方法的影响较大,为更大地改善三维编织复合材料的力学性能,人们开始转入复合材料的优化设计以及新编织工艺的开发上。最近10年中,专门探讨细观几何模型的文献较少,国外开始进行多层连锁编织的相关探索,如Lomov等研究了多种截面形式的连锁编织物,各类连锁织物的解析方法与之前的模型理论差异较大。Saul建立了一种新的三维正交复合材料弹性刚度特性分析模型,它具有评估材料因编织参数变化而导致的弹性性能变化的能力。新模型把三维编织复合材料看作是多个包含树脂包裹纤维单一元素的层的组合。新模型的公式表达方法是先把胞体单元分成多层,再把每一层分层多个单一元素。新模型对于除Ez外的材料弹性刚度特性的预测都较之前的模型更加准确,实际中,纤维和树脂的波动对此模型模拟的准确性有着负面的影响。

二 、 宏观力学性能的研究进展

  三维编织复合材料宏观力学性能的研究主要涉及拉伸、压缩、剪切、弯曲、冲击及损伤等方面,大部分文献都是力学性能的理论研究与测试相结合的。由于三维编织复合材料的多样性以及分散性,本文仅列出一些较为有代表性或者新颖的研究成果以供读者参考。

  三维编织复合材料的基本力学性能的实验研究主要是在测试材料特性的基础上,寻求纤维体积含量、编织角等参数对材料性能的影响规律。Shivakumar在研究中发现三维编织复合材料压缩强度受轴向纱错排的影响非常明显,而受偏轴纱错排的影响较小。

  Bogdanovich[8]提出三维编织复合材料的面内刚度主要受3个方面的影响,即总的纤维体积分数,纤维在经向、Z向等的分布规律(分布比例),纤维在3个方向上的平直度和整齐性。Pazmino对3TEX公司制备的三维编织复合材料通过Micro-CT对浸渍质量和材料内部几何结构进行了观察和评价,并且进行了编织方向的准静态拉伸强度和拉伸-拉伸疲劳试验。通过实验得到了500万次循环载荷作用下Vf= 55.6%的三维编织材料不被完全破坏的最大施加载荷与疲劳寿命曲线,通过对比不同纤维体积含量下的三维编织复合材料的疲劳寿命,得出此范围内,疲劳寿命随着纤维体积含量的增加而增大。同时,Pazmino分析了材料的剩余力学性能,绘出了经历不同循环加载次数后材料的应力-应变曲线、初始弹性模量曲线、极限抗拉强度曲线,在经过500万次循环加载后,材料的初始弹性模量下降较多,而极限抗拉强度曲线变化很小。

  国内到20世纪90年代末才开始出现相关的研究报道,虽然起步较晚,但是比较活跃。李嘉禄等采用1×1、1×2和1×3三种不同的编织结构对三维多向编织复合材料的力学性能进行了研究,结果显示,编织复合材料的拉伸以及弯曲的应力—应变曲线均呈双线性特点,加入轴向非编织纤维使得材料的拉伸强度、刚度和弯曲强度、刚度得到了提高。孙慧玉等通过实验测定了三维编织结构复合材料侧边未切割、受切割和中央钻孔试件的拉伸性能,对比了受切割和未切割纤维对于试件侧边拉伸应变的影响,同时对三维编织结构复合材料的孔边应力集中现象进行了研究,得到一个重要结论,即4步法复合材料的孔边应力集中系数比传统层板复合材料和金属材料的低,从这个意义上说,三维编织结构复合材料适合于作为含孔结构的连接件。

  卢子兴等对三维编织复合材料进行了拉伸实验,得到了影响编织复合材料力学性能的最重要因素是它的编织角的结论,认为加入轴向纤维的五向编织材料的变形和失效模式会发生改变,其基体材料更趋向于脆性破坏;接着对三维四向编织复合材料进行了压缩测试,发现三维编织复合材料的纵横向压缩性能差别较大,二者的压缩破坏机理也存在很大差异,纵向压缩性能受编织角大小的影响较大,即存在某个临界值,当编织角大于该临界值时,三维编织复合材料的纵向压缩破坏呈现非线性的塑性特征,而当编织角小于该临界值时,三维编织复合材料的纵向压缩破坏呈现线性的脆性特征。

  Fang研究了纺线的扭曲变形对三维四向编织复合材料的影响,认为加捻纱线的扭转角对3D编织复合材料的弹性性能参数(除横向弹性模量和横向泊松比以外)都有较大影响。随着纱线扭转角的增大,复合材料的纵向弹性模量、泊松比、剪切模量逐渐降低。在内部编织角为30°和45°的情况下,材料的单向拉伸强度都随纱线扭转角的增大而减小,在扭转角小于9.5°时,4°5编织角的材料单向拉伸强度较30°的下降快,而扭转角大于9.5°时,下降速度相反。

  Yu利用双尺度法对4步法三维编织复合材料的刚度和强度特性进行预测,并得到了编织角与纤维体积分数对复合材料拉伸、弯曲以及扭转强度的影响趋势。经过实验验证,双尺度法的预测较为准确,实验结果显示,随着编织角增大,拉伸和弯曲强度下降,并逐渐接近基体强度,扭转强度先增大后减小,故最优编织角选择在扭转强度的最大位置处,且当编织角较小(40°以下)时,其拉伸、弯曲强度随纤维体积分数增大而增大,当编织角较大接近40°时,在某一最优纤维体积分数处,拉伸、弯曲强度达到最大,在编织角小于48°时,扭转强度随着纤维体积分数以及编织角的增大而增大,受纤维体积分数的影响更为明显。

  Sun为研究力学性能和频率响应之间的关系,用Z变换法讨论了在准静态(MTS材料试验系统)和高应变率状态下(SHPB设备)三维机织复合材料的面内和面外2个方向的压缩行为,这是在频率领域的第一次尝试。

  冲击、疲劳、蠕变、损伤等工程力学性能对于材料的工程应用有着重大的意义,但是由于实验室条件等方面的原因,这一方面的研究相对较少,而且研究的共性不大。

  沈怀荣采用轻气炮对三维整体编织结构复合材料进行了高速对称碰撞实验和弹丸穿靶实验,虽然没有给出三维编织的形式以及很可靠的理论推理,但是至少提供了一种可以作为参考的三维编织复合材料冲击试验的方法。李典森等研究了多个编织参数对三维编织复合材料蠕变性能的影响,得出编织角小且纤维体积含量高的三维编织复合材料的抗蠕变性能更高,同时五向编织比四向编织复合材料的抗蠕变性能要高。

  李嘉禄等研究了编织角对三维编织复合材料疲劳性能的影响,发现在疲劳试验中,编织角大的三维编织复合材料易损伤。此外,Li等简述了三维编织复合材料拉伸、压缩和弯曲性能的切口边缘效应特点。为计算复合材料内编织纱线的剩余长度,建立了未切割和切割边缘复合材料的微观结构几何模型。切割破坏了复合材料结构的完整性,降低了材料的承载能力。试验表明,样品宽度方向的切割对材料刚度、强度以及弯曲性能的影响较小,但在厚度方向上的切割则影响较大,而在拉伸载荷下进行弯曲试验模量降低更多;复合材料内编织纱线的剩余长度越短,切割样品的承载能力越低。

三、三维编织复合材料的应用

  三维编织复合材料大多采用液体成型工艺进行浸胶固化,直接形成复合材料结构件,如树脂传递模塑工艺(RTM)、树脂膜渗透工艺(RFI)及真空辅助树脂渗透工艺(VARI)等。目前,三维编织复合材料不仅在航空航天领域得到了广泛应用,而且在船舶、民用基础设施以及医疗器械等领域也显示出了巨大的潜力。

  三维编织复合材料技术可以应用于制作“J”型机骨架,机翼和机身蒙皮,飞机进气道,飞行器的承力梁,异性接头,多种形式的耐烧蚀、承力的圆筒形、锥形筒的制件。在保证达到质量要求的前提下,大大缩减多的制件的质量,降低了成本。例如洛克希德·马丁公司采用三维编织技术研制了F-35战斗机进气道的预制体,加强筋与进气道壳体为整体结构,节省了大量紧固件的使用,提高了气动性能,简化了装配工序。直升机的起落架扭力臂和纵向推力杆已开始使用三维编织技术一体成型(如图1所示)。

图1 三维编织一体成型的直升机构件

  采用三维编织技术研制的LEAP-X发动机风扇叶片也已成功通过FOD试验,并将应用于中国商飞C919等多个机型。在航天领域,高温、烧蚀和高速冲刷的导弹头锥、筒身,火箭发动机喷嘴、筒体等也大量采用三维整体编织复合材料(如图2所示)。

图2 三维编织成型的复合材料发动机风扇叶片

  耐冲击性能好的的三维编织复合材料可用于车辆的冲击部件以及抗冲击需求高的集装箱或压力容器件(如图3所示)。对于开孔较多的复合材料制件,三维编织技术能很好的保证此类制件的整体性,减少二次加工量,并避免二次加工对复合材料零件的损伤。

  尽管三维编织复合材料制件多种多样,但目前商业应用仍相对较少,制约三维编织技术推广原因主要有设备、技术成熟度、力学性能和耐久性等问题,随着技术的进步及编织成本的降低,三维编织复合材料正逐渐发展成为一个热门的研究方向。

免责声明:部分资料来源于网络,转载的目的在于传递更多信息及分享,并不意味着赞同其观点或证实其真实性,
也不构成其他建议。仅提供交流平台,不为其版权负责。如涉及侵权,请联系我们及时修改或删除。
邮箱:info@polymer.cn
(责任编辑:shu)
查看评论】【 】【打印】【关闭
  • 相关新闻
  • 无相关新闻