相关链接
联系方式
  • 通信地址:宁波市镇海区中官西路1219号
  • 邮编:315201
  • 电话:+86-574-86621498
  • 传真:
  • Email:tao.chen@nimte.ac.cn
当前位置:> 首页 > 论文著作 > 正文
[Angew. Chem. Int. Ed.] Aggregation Induced Emissive Carbon Dots Gels for Octopus-Inspired Shape/Color Synergistically Adjustable Actuator
作者:Shuangshuang Wu, H. Shi, Wei Lu,* S. Wei, H Shang, H. Liu, M. Si, X. Le, P. Theato, Tao Chen*
关键字:aggregation induced emission ? carbon dots ? fluorescent gel ? actuator ? soft robot
论文来源:期刊
具体来源:Angew. Chem. Int. Ed., 2021, inpress
发表时间:2021年

Some living organisms such as the octopus have fantastic abilities to simultaneously swim away and alter body color/morphology for disguise and self-protection, especially when there is a threat perception. However, it is still quite challenging to construct artificial soft actuators with octopus-like synergistic shape/color change and directional locomotion behaviors, but such systems could enhance the functions of soft robotics dramatically. Herein, we proposed to utilize unique hydrophobic carbon dots (CDs) with rotatable surficial groups to construct the aggregation-induced emission (AIE) active glycol CDs polymer gel, which could be further employed to be interfacially bonded to an elastomer to produce anisotropic bilayer soft actuator. When putting the actuator on a water surface, glycol spontaneously diffused out from the gel layer to allow water intake, resulting in a color change from a blue dispersion fluorescence to red AIE and a shape deformation, as well as a large surface tension gradient that can promote its autonomous locomotion. Based on these findings, artificial soft swimming robots with octopus-like synergistic shape/color change and directional swimming motion were demonstrated. This study provides an elegant strategy to develop advanced multi-functional

bio-inspired intelligent soft robotics.