相关链接
联系方式
  • 通信地址:宁波市镇海区中官西路1219号
  • 邮编:315201
  • 电话:+86-574-86621498
  • 传真:
  • Email:tao.chen@nimte.ac.cn
当前位置:> 首页 > 论文著作 > 正文
[Chemical Engineering Journal] Biomimetic organohydrogel actuator with high response speed and synergistic fluorescent variation
作者:Hui Shang, Xiaoxia Le*, M. Si, S. Wu, Y. Peng, F. Shan, S. Wu, Tao Chen*
关键字:Organohydrogel actuator, Stimuli responsive, Fluorescence variation, Fast morphing
论文来源:期刊
具体来源:Chemical Engineering Journal, 2022, 429, 132290
发表时间:2022年
Current hydrogel-based actuators have achieved rapid development due to their excellent performance such as shape-morphing and color-changing for application in fields such as camouflage, biomimetic soft-robotics and so on. However, it is still challenging to fabricate soft robots with the capability of simultaneous changes in shape and fluorescent color at a fast speed when triggered by one single stimulus. Herein, an anisotropic organohydogel actuator made up of rGO-doped hydrophilic poly(N-isopropylacrylamide) (PNIPAM) network and hydrophobic poly(lauryl methacrylate) (PLMA) network is prepared via a two-step interpenetrating method. Bearing fluorescent monomer N-(4-(1,2,2-triphenylvinyl)phenyl)acrylamide (ATPE) as well as fluorescent ligand 6-acrylamidopicolinic acid (6APA), the PLMA network shows fluorescent changes in color or brightness depending on the presence or absence of Eu3+ions in response to heat/NIR. In a word, the proposed organohydrogel actuator, which exhibits simultaneous fluorescence color variation and fast morphing in response to one stimulus, provides insights in designing and fabricating novel soft robots.