相关链接
联系方式
  • 通信地址:江苏省南京市江宁区东南大学路2号:化学化工学院化工大楼514室、327室
  • 邮编:211189
  • 电话:025-52090618
  • 传真:
  • Email:fchem@163.com
当前位置:> 首页 > 论文著作 > 正文
NiCoP/NF 1D/2D Biomimetic Architecture for Markedly Enhanced Overall Water Splitting
作者:Wang, DD (Wang, Dongdong) [1] ; Zhang, YW (Zhang, Yiwei) [1] ; Fei, T (Fei, Ting) [1] ; Mao, CF (Ma
关键字:biomimetic structureNiCoPNFbifunctional electrocatalystwater splitting
论文来源:期刊
发表时间:2021年
The construction of a well-defined metal-organic framework (MOF) precursor structure is essential to obtain highly efficient transition metal phosphide electrocatalysts for the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) in water splitting. In this regard, we propose a novel strategy involving the in situ conversion of flake nickel-cobalt hydroxide into NiCo MOF with a unique biomimetic architecture (i. e. Venus flytrap-like morphology with dense 1D nanowires anchoring on 2D nanosheets), and further phosphating the precursor into NiCoP that possesses a similar, distinctive structure. Specifically, 1D nanowires afford effective electron transfer, while 2D nanosheets provide enhanced mechanical stability to the composite. The experimental results show that this material has an enormous amount of available active sites, accelerated charge/mass transfer, and a structural synergistic effect. As a result, the as-prepared NiCoP/nickel foam (NF) catalyst only requires overpotentials of 78 and 262 mV to reach a current density of 10 mA cm(-2) for the HER and OER in 1.0 M KOH, respectively. Furthermore, the application of NiCoP/NF as a bifunctional catalyst for the overall water splitting reaction yields current densities of 10 mA cm(-2) at 1.60 V. Therefore, this is an effective strategy for the development of next-generation electrocatalysts for solar-energy conversion.