相关链接
联系方式
  • 通信地址:苏州市十梓街1号 苏州大学 软凝聚态物理及交叉研究实验室
  • 邮编:215006
  • 电话:0512-65884406
  • 传真:
  • Email:gaojian.chen@gmail.com
当前位置:> 首页 > 论文著作 > 正文
[Polym. Chem.] Efficient cancer cell capturing SiNWAs prepared via surface-initiated SET-LRP and click chemistry
作者:Lulu Xue, Zhonglin Lyu, Yafei Luan, Xinhong Xiong, Jingjing Pan, Gaojian Chen*and Hong Chen*
关键字:http://pubs.rsc.org/en/Content/ArticleLanding/2015/PY/C5PY00247H#!divAbstract
论文来源:期刊
具体来源:Polym. Chem., 2015,6, 3708-3715
发表时间:2015年
Circulating tumor cells (CTCs) exist in extraordinarily low numbers in the blood of patients with solid tumors, and thus the discovery of a more effective, economical and specific way to capture tumor cells is essential and still remains a tremendous challenge. In this work, the glycopolymer, poly(N-acryloyl glucosamine) (PAGA), and TD05 aptamers were combined on silicon nanowire arrays (SiNWAs) to capture Ramos cells through SET-LRP and click chemistry for the first time. The polymerizations showed controllable living features using 2-hydroxyethyl α-bromoisobutyrate (HEBiB) as a sacrificial initiator. In a serum-containing environment, PAGA-modified surfaces could catch small amounts of Ramos cells. Furthermore, the number of captured specific Ramos cells increased extensively compared with the control after the introduction of the aptamer molecule TD05 onto the PAGA-modified surface. A few non-specific Baf3 cells were captured on the surfaces prepared. The results revealed the synergistic effect generated by combining a glycopolymer and aptamer, which could achieve multivalency-enhanced effective and specific cancer cell capturing, thus suggesting that this can be a promising approach for cancer detection.