当前位置:> 首页 > 论文著作 > 正文
【11 Polymers for Advanced Technologies】 Synthesis and characterization of a novel organophosphorus flame retardant and its application in polypropylene
作者:Nana Tian, Xin Wen, Jiang Gong, Li Ma, Jian Xue, Tao Tang*
关键字:flame retardancy, organophosphorus, polypropylene, synthesis
论文来源:期刊
具体来源:Polymers for Advanced Technologies 24(7) (2013) 653-659
发表时间:2013年
A novel organophosphorus containing spiro and caged bicyclic phosphate, 3,9‐Bis‐(1‐oxo‐2,6,7‐trioxa‐1‐phospha‐bicyclo[2.2.2]oct‐4‐ylmethoxy)‐2,4,8,10‐tetraoxa‐3,9‐diphospha‐spiro[5.5]undecane 3, 9‐dioxide (SBCPO), was synthesized and characterized by Fourier transform infrared (FTIR), hydrogen‐1 nuclear magnetic resonance (NMR) and phosphorus‐31 NMR. The flame retardancy of polypropylene (PP) containing the novel intumescent flame retardant (IFR) based on the combination between SBCPO and melamine (MA) was studied by limiting oxygen index (LOI), UL‐94 test and cone calorimeter test. Results indicated that this combination showed the excellent flame retardancy for PP at appropriate proportions (with the total loading of 30 wt. % and SBCPO: MA?=?4:1). The value of LOI was as high as 31.6, and the rating in UL94 reached to V‐0. Moreover, the HRR and THR of IFR/PP decreased significantly in comparison with that of neat PP. The scanning electron microscopy results indicated that the incorporation of SBCPO could induce the formation of intumescent char layer, which retarded the degradation and combustion process of PP. The thermal oxidative degradation of the PP samples at different temperature was analyzed by FTIR. The thermal stabilities of the composites were further investigated by thermogravimetric analysis. It was found that the amount of residues was increased greatly with the addition of SBCPO that remained in the form of polyaromatic stacks and phosphoric or polyphosphoric acid at the residual chars.