Links
Contact Info.
  • Address:长春市前进大街2699号
  • Zip:130012
  • Tel:0431-85168022
  • Fax:0431-85168022
  • Email:guansw@jlu.edu.cn
Current Location :> Home > Publications > Text
25. Preparation and Dielectric Properties of AGS@CuPc/PVDF Composites
writer:Qitong WangWenlong JiangShaowei GuanYunhe Zhang
keywords:Composite
source:期刊
specific source:Journal of Inorganic and Organometallic Polymers and Materials, 2013, 23(3): 743-750.
Issue time:2013年
GNS/PVDF, AGS/PVDF and AGS@CuPc/PVDF composites were prepared using hot press molding technique. The micromorphologies showed that the dispersion degree of the GNS in the matrix decreases in the following order: AGS@CuPc/PVDF > AGS/PVDF > GNS/PVDF. It could be attributed to AGS treated with copper phthalocyanine (CuPc) exhibit strongest interface bonding with PVDF, and acidification GNS (AGS) have stronger interface bonding with PVDF than GNS. GNS/PVDF composites showed a slight increase in dielectric constant and dielectric loss with the growing content of fillers. AGS/PVDF composites presented a better performance in dielectric constant than that of GNS/PVDF but with a much higher dielectric loss. Especially AGS@CuPc/PVDF three-phase composite displayed better dielectric properties than GNS/PVDF and AGS/PVDF composites, with a dielectric constant 327 and a dielectric loss 0.63 at 10 kHz. It could be attributed to the cooperation of well dispersion of conductive fillers and the electric barrier effects of CuPc.