相关链接
联系方式
  • 通信地址:上海市杨浦区四平路1239号同济大学工程试验馆224室
  • 邮编:200092
  • 电话:010-65981097
  • 传真:
  • Email:hongbogu2014@tongji.edu.cn
当前位置:> 首页 > 论文著作 > 正文
Polypyrrole Doped Epoxy Resin Nanocomposites with Enhanced Mechanical Properties and Reduced Flammability
作者:X. Zhang, X. Yan, J. Guo, Z. Liu, D. Jiang, Q. He, H. Wei, H. Gu, et al.
关键字:Polypyrrole, Epoxy Resin Nanocomposites
论文来源:期刊
具体来源:Journal of Materials Chemistry C
发表时间:2014年
    For the liquid epoxy nanosuspensions with both fibril and spherical polypyrrole (PPy) nanostructures, a stronger PPy nanofibers/epoxy interaction and more temperature stable behavior with a lower flow activation energy of nanosuspensions with nanofibers (54.34 kJ mol?1) than that with nanospheres (71.15 kJ mol?1) were revealed by rheological studies. As well as the common enhancing mechanism of limiting crack propagation in the polymer matrix, the nanofibers further initiated the shear bands in the epoxy resin to give a higher tensile strength (90.36 MPa) than that of pure epoxy (70.03 MPa) and even that of the epoxy nanocomposites with nanospheres (84.53 MPa). With a larger specific surface area, the nanofibers rather than nanospheres were observed to reduce the flammability of epoxy more efficiently by assisting more char formation of the epoxy resin. The hydroxyl groups formed between the protons of the doped acid in the PPy nanofillers and the epoxy broke the conjugate structure of PPy, leading to a higher bandgap in the nanocomposites (Eg1 = 3.08 eV for 1.0 wt% PPy nanofibers) than that of pure nanofillers (1.8 eV for PPy nanofibers and 1.2 eV for PPy nanospheres). Due to the high aspect ratio, the PPy nanofibers could form the conductive path more easily than the PPy nanospheres to provide a lower percolation threshold value. The real permittivity was observed to increase with increasing the PPy nanofiller loading, and the enhanced permittivity was interpreted by the interfacial polarization.