Links
Contact Info.
  • Address:陕西省西安市友谊西路127号
  • Zip:710072
  • Tel:029-88431638
  • Fax:
  • Email:nwpugjw@163.com
Current Location :> Home > Publications > Text
[Composites Part A]Fabrication and investigation on ternary heterogeneous MWCNT@TiO2-C fillers and their silicone rubber wave-absorbing composites
writer:Jia Zhao, Junliang Zhang, Lei Wang, Shanshan Lyu, Wenlong Ye, Ben Bin Xu, Hua Qiu, Lixin Chen*,Jujun Wei*
keywords:MWCNT@TiO2-C, wave absorbent
source:期刊
specific source:Composites Part A: Applied Science and Manufacturing
Issue time:2019年

Ternary heterogeneous MWCNT@TiO2-C wave absorbent was firstly prepared, using glucose, MWCNT, and titanium isopropoxide as raw materials, through the solvothermal process followed by post-heat treatment. Afterwards, MWCNT@TiO2-C/silicone rubber wave-absorbing composites were fabricated via solution casting and subsequent curing process. XRD, Raman, XPS, and TEM analyses demonstrated the MWCNT@TiO2-C fillers were successfully synthesized with TiO2 and amorphous carbon coated on the surface of MWCNT. When the MWCNT@TiO2-C/silicone rubber wave-absorbing composites contained 25 wt% MWCNT@TiO2-C fillers and with the thickness of 2.5 mm, it displayed the minimum reflection loss of 53.2 dB and an effective absorption bandwidth of 3.1 GHz. Remarkable wave-absorbing performances for MWCNT@TiO2-C/silicone rubber composites could be attributed to the synergetic effect of interfacial polarization loss and conduction loss.