Links
Contact Info.
  • Address:成都市望江路29号四川大学国家生物医学材料工程技术研究中心
  • Zip:610064
  • Tel:028-85412923
  • Fax:
  • Email:bhe@scu.edu.cn
Current Location :> Home > Publications > Text
Effects of pH-sensitive Chain Length on Doxorubicin Release from mPEG-b-PH-b-PLLA Nanoparticles
writer:Rong Liu, Bin He*, Dong Li, Yusi Lai, Jing Chang, James. Z. Tang, Zhongwei Gu*
keywords:poly(ethylene glycol), poly(L-histidine), poly(L-lactide), pH sensitivity, doxorubicin, drug release, nanoparticle
source:期刊
specific source:Int. J. Nanomed., 2012, 7: 4433-4446
Issue time:2012年

Background: Two methoxyl poly(ethylene glycol)-poly(L-histidine)-poly(L-lactide) (mPEG-PH-PLLA) triblock copolymers with different poly(L-histidine) chain lengths were synthesized. The morphology and biocompatibility of these self-assembled nanoparticles was investigated.
Methods: Doxorubicin, an antitumor drug, was trapped in the nanoparticles to explore their drug-release behavior. The drug-loaded nanoparticles were incubated with HepG2 cells to evaluate their antitumor efficacy in vitro. The effects of poly(L-histidine) chain length on the properties, drug-release behavior, and antitumor efficiency of the nanoparticles were investigated.
Results: The nanoparticles were pH-sensitive. The mean diameters of the two types of mPEG-PH-PLLA nanoparticle were less than 200 nm when the pH values were 5.0 and 7.4. The nanoparticles were nontoxic to NIH 3T3 fibroblasts and HepG2 cells. The release of doxorubicin at pH 5.0 was much faster than that at pH 7.4. The release rate of mPEG45-PH15-PLLA82 nanoparticles was much faster than that of mPEG45-PH30-PLLA82 nanoparticles at pH 5.0.
Conclusion: The inhibition effect of mPEG45-PH15-PLLA82 nanoparticles on the growth of HepG2 cells was greater than that of mPEG45-PH30-PLLA82 nanoparticles when the concentration of encapsulated doxorubicin was less than 15 μg/mL.