Contact Info.
Current Location :> Home > Publications > Text
3D Printable, Highly-Stretchable, Superior Stable Ionogels Based on Poly(ionic liquid) with Hyperbranched Polymers as Macro-cross-linkers for High-Performance Strain Sensors
writer:Zihao Wang, Jianxin Zhang, Jiahang Liu, Shuai Hao; Hongzan Song*, Jun Zhang*
keywords:Printable,Stretchable,Ionogels, Strain Sensor
specific source:ACS Applied Materials & Interfaces,
Issue time:2021年
Stretchable ionogels have recently emerged as promising soft and safe ionic conductive materials for use in wearable and stretchable electrochemical devices. However, the complex preparation process and insufficient thermomechanical stability greatly limit the precise rapid fabrication and application of stretchable ionogels. Here, we report an in situ 3D printing method for fabricating high-performance single network chemical ionogels as advanced strain sensors. The ionogels consist of a special cross-linking network constructed by poly(ionic liquid) and hyperbranched polymer (macro-cross-linkers) that exhibits high stretchability (>1000%), superior room-temperature ionic conductivity (up to 5.8 mS/cm), and excellent thermomechanical stability (?75 to 250 °C). The strain sensors based on ionogels have a low response time (200 ms), high sensitivity with temperature independence, long-term durability (2000 cycles), and excellent temperature tolerance (?60 to 250 °C) and can be used as human motion sensors. This work provides a new strategy to design highly stretchable and superior stable electronic devices.