Links
Contact Info.
  • Address:山东第一医科大学化学与制药工程学院,科技创新中心,山东济南
  • Zip:250021
  • Tel:18865922696
  • Fax:
  • Email:jiangrujian@sdfmu.edu.cn
Current Location :> Home > Publications > Text
【ACS Applied Materials & Interfaces, IF=9.229】Thermoresponsive Nanostructures: From Mechano-Bactericidal Action to Bacteria Release
writer:Rujian Jiang, Yaozhen Yi, Lingwan Hao
keywords:mechano-bactericidal, bacteria release, nanostructures, thermoresponsive, antibiotic resistance
source:期刊
Issue time:2021年
Overuse of antibiotics can increase the risk of notorious antibiotic resistance in bacteria, which has become a growing public health concern worldwide. Featured with the merit of mechanical rupture of bacterial cells, the bioinspired nanopillars are promising alternatives to antibiotics for combating bacterial infections while avoiding antibacterial resistance. However, the resident dead bacterial cells on nanopillars may greatly impair their bactericidal capability and ultimately impede their translational potential toward long-term applications. Here, we show that the functions of bactericidal nanopillars can be significantly broadened
by developing a hybrid thermoresponsive polymer@nanopillarstructured surface, which retains all of the attributes of pristine nanopillars and adds one more: releasing dead bacteria. We fabricate this surface through coaxially decorating mechano-bactericidal ZnO nanopillars with thermoresponsive poly(Nisopropylacrylamide) (PNIPAAm) brushes. Combining the benefits of ZnO nanopillars and PNIPAAm chains, the antibacterial performances can be controllably regulated between ultrarobust mechano-bactericidal action (~99%) and remarkable bacteriareleasing efficiency (~98%). Notably, both the mechanical sterilization against the live bacteria and the controllable release for the pinned dead bacteria solely stem from physical actions, stimulating the exploration of intelligent structure-based bactericidal surfaces with persistent antibacterial properties without the risk of triggering drug resistance