相关链接
联系方式
  • 通信地址:山东第一医科大学化学与制药工程学院,科技创新中心,山东济南
  • 邮编:250021
  • 电话:18865922696
  • 传真:
  • Email:jiangrujian@sdfmu.edu.cn
当前位置:> 首页 > 最新动态 > 正文
恭喜2019级本科陈宇翔同学第一篇文章发表在Colloids and Surfaces B: Biointerfaces (IF=5.999 )
Pathogenic bacteria contamination ubiquitously occurs on high-contact surfaces in hospitals and has long been a threat to public health, inducing severe nosocomial infections that cause multiple organ dysfunction and increased hospital mortality. Recently, nanostructured surfaces with mechano-bactericidal properties have shown potential for modifying material surfaces to fight against the spread of pathogenic microorganisms without the risk of triggering antibacterial resistance. Nevertheless, these surfaces are readily contaminated by bacterial attachment or inanimate pollutants like solid dust or common fluids, which has greatly weakened their antibacterial capabilities. In this work, we discovered that the nonwetting Amorpha fruticosa leaf surfaces are equipped with mechano-bactericidal capacity by means of their randomly-arranged nanoflakes. Inspired by this discovery, we reported an artificial superhydrophobic surface with similar nanofeatures and superior antibacterial abilities. Compared to conventional bactericidal surfaces, this bioinspired antibacterial surface was synergistically accompanied by antifouling performances, which significantly prevent either initial bacterial attachment or inanimate pollutants like dust covering and fluid contaminants. Overall, the bioinspired antifouling nanoflakes surface holds promise as the design of next-generation high-touch surface modification that effectively reduces the transmission of nosocomial infections.