相关链接
联系方式
  • 通信地址:上海市梅陇路130号391信箱
  • 邮编:200237
  • 电话:021-64253916
  • 传真:021-64253916
  • Email:mdlang@ecust.edu.cn
当前位置:> 首页 > 论文著作 > 正文
International Journal of Nanomedicine 2012, 7 4893
作者:1. Sheng Lian, Yan Xiao*, Qingqing Bian, Yu Xia, Changfa Guo, Shenguo Wang, Meidong Lang*
关键字:thermoresponsive, N-isopropylacrylamide, biodegradable, bioreactive
论文来源:期刊
发表时间:2012年

A series of biodegradable thermosensitive copolymers was synthesized by free radical polymerization with N-isopropylacrylamide (NIPAAm), acrylic acid (AAc) and macromer 2-hydroxylethyl methacrylate-poly(ε-caprolactone) (HEMAPCL). The structure and composition of the obtained terpolymers were confirmed by proton nuclear magnetic resonance spectroscopy, while their molecular weight was measured using gel permeation chromatography. The copolymers were dissolved in phosphate-buffered saline (PBS) solution (pH = 7.4) with different concentrations to prepare hydrogels. The lower critical solution temperature (LCST), cloud point, and rheological property of the hydrogels were determined by differential scanning calorimetry, ultraviolet-visible spectrometry, and rotational rheometry, respectively. It was found that LCST of the hydrogel increased significantly with the increasing NIPAAm content, and hydrogel with higher AAc/HEMAPCL ratio exhibited better storage modulus, water content, and injectability. The hydrogels were formed by maintaining the copolymer solution at 37°C. The degradation experiment on the formed hydrogels was conducted in PBS solution for 2 weeks and demonstrated a less than 20% weight loss. Scanning electron microscopy was also used to study the morphology of the hydrogel. The copolymer with NIPAAm/AAc/HEMAPCL ratio of 88:9.6:2.4 was bioconjugated with type I collagen for the purpose of biocompatibility enhancement. In-vitro cytotoxicity of the hydrogels both with and without collagen was also addressed.