当前位置:群英聚首 >> 最新动态 >> 正文
祝贺杨杰同学的论文发表在Applied Thermal Engineering期刊上
来源:于伟教授个人网站 发布日期:2019-09-24

Jie Yang, Yanlin Jia, Naici Bing?, Lingling Wang, Huaqing Xie, Wei Yu?, Reduced graphene oxide and zirconium carbide co-modified melamine sponge/paraffin wax composites as new form-stable phase change materials for photothermal energy conversion and storage,Applied Thermal Engineering 163 (2019) 114412


Abstract

Photothermal energy conversion and storage are crucial in solar collection systems. However, it is difficult for traditional media to balance high photothermal conversion, thermal conductivity and thermal energy storage. Considering the advantages of nanofluids (volumetric absorption systems) and PCMs (high latent storage density), we develop novel form-stable PCMs for solar collection systems and overcome the disadvantages of current systems, which take melamine sponge as supporting materials, paraffin wax as solid-liquid PCMs, reduced graphene oxide and zirconium carbide as solar absorption and thermal conduction additives. The results demonstrate that the rich network skeleton structure of reduced graphene oxide modified melamine sponge provides huge surface tension and capillary force to support paraffin wax for achieving the shape-stability before and after phase transition, and the latent enthalpy reaches 137?J/g. The composites PCMs with different content zirconium carbide show good photoabsorption, high thermal storage capacity and excellent heat transfer property. The photothermal conversion efficiency is up to 81% when doped with 0.01?wt% zirconium carbide. The maximum thermal conductivity of composites PCMs is 121% higher than that of paraffin wax. The reduced graphene oxide and zirconium carbide co-modified melamine sponge/paraffin wax composites show its great potential in solar energy utilization and storage.


Copyright © 2005 Polymer.cn All rights reserved
中国聚合物网 版权所有
经营性网站备案信息

京公网安备11010502032929号

工商备案公示信息

京ICP证050801号

京ICP备12003651号