相关链接
联系方式
  • 通信地址:广西南宁市大学东路100号广西大学轻工与食品工程学院
  • 邮编:530004
  • 电话:0771-3237301
  • 传真:
  • Email:nieshuangxi@gxu.edu.cn
当前位置:> 首页 > 最新动态 > 正文
【24/02/28】2021级硕士生杜国立Nano-Micro Letters:离电兼容的摩擦电凝胶

Abstract:Rapid advancements in flexible electronics technology propel soft tactile sensing devices towards high-level biointegration, even attaining tactile perception capabilities surpassing human skin. However, the inherent mechanical mismatch resulting from deficient biomimetic mechanical properties of sensing materials poses a challenge to the application of wearable tactile sensing devices in human-machine interaction. Inspired by the innate biphasic structure of human subcutaneous tissue, this study discloses a skin-compliant wearable iontronic triboelectric gel via phase separation induced by competitive hydrogen bonding. Solvent-nonsolvent interactions are used to construct competitive hydrogen bonding systems to trigger phase separation, and the resulting soft-hard alternating phase-locked structure confers the iontronic triboelectric gel with Young''s modulus (6.8-281.9 kPa) and high tensile properties (880%) compatible with human skin. The abundance of reactive hydroxyl groups gives the gel excellent tribopositive and self-adhesive properties (peel strength >70 N m-1). The self-powered tactile sensing skin based on this gel maintains favorable interface and mechanical stability with the working object, which greatly ensures the high fidelity and reliability of soft tactile sensing signals. This strategy, enabling skin-compliant design and broad dynamic tunability of the mechanical properties of sensing materials, presents a universal platform for broad applications from soft robots to wearable electronics.