相关链接
联系方式
  • 通信地址:广西南宁市大学东路100号广西大学轻工与食品工程学院
  • 邮编:530004
  • 电话:0771-3237301
  • 传真:
  • Email:nieshuangxi@gxu.edu.cn
当前位置:> 首页 > 最新动态 > 正文
【23/08/10】2020级博士生罗斌Advanced Functional Materials:多尺度结构纳米纤维素摩擦电气凝胶

【AbstractThe advent of self-powered wearable electronics will revolutionize the fields of smart healthcare and sports monitoring. This technological advancement necessitates more stringent design requirements for triboelectric materials. The triboelectric aerogels must enhance their mechanical properties to address the issue of structural collapse in real world applications. This study fabricated stiff nanocellulosic triboelectric aerogels with multiscale structures induced by the Hofmeister effect. The aggregation and crystallization of polymer molecular chains are enhanced by the Hofmeister effect, while ice crystal growth imparts a porous structure to the aerogel at the micron scale. Therefore, the triboelectric aerogel exhibits exceptional stiffness, boasting a Young’ s modulus of up to 142.9 MPa and a specific modulus of up to 340.6 kN m kg–1, while remaining undeformed even after supporting 6600 times its weight. Even after withstanding an impact of 343 kPa, highly robust wearable self-powered sensors fabricated with triboelectric aerogels remain operational. Additionally, the self-powered sensor is capable of accurately detecting human movements, particularly in abnormal fall postures detection. This study provides considerable research and practical value for promoting material design and broadening application scenarios for self-powered wearable electronics.