当前位置:群英聚首 > 论文著作 > 正文
Self-healing Four-Dimensional Printing with Ultraviolet Curable Double Network Shape Memory Polymer System
来源:张彪副教授个人网站 发布日期:2019-08-13
作者:B. Zhang, W. Wang, Z. Zhang, Y. Zhang, H. Hingorani, Z. Liu, J. Liu, Q. Ge
关键字:self-healing, shape memory polymer, 4D printing, DLP-based 3D printing, semicrystalline polymer
论文来源:期刊
具体来源:ACS Applied Materials & Interfaces
发表时间:2019年

Four-dimensional (4D) printing that enables 3D printed structures to change configurations over time has gained great attention because of its exciting potential in various applications. Among all the 4D printing materials, shape memory polymers (SMPs) possess higher stiffness and faster response rate and therefore are considered as one of most promising materials for 4D printing. However, most of the SMP-based 4D printing materials are (meth)acrylate thermosets which have permanently cross-linked covalent networks and cannot be repaired if any damage occurs. To address the unrepairable nature of SMP-based 4D printing materials, this paper reports a double-network self-healing SMP (SH-SMP) system for high-resolution self-healing 4D printing. In the SH-SMP system, the semicrystalline linear polymer polycaprolactone (PCL) is incorporated into a methacrylate-based SMP system which has good compatibility with the digital light processing-based 3D printing technology and can be used to fabricate complex 4D printing structures with high resolution (up to 30 μm). The PCL linear polymer imparts the self-healing ability to the 4D printing structures, and the mechanical properties of a damaged structure can be recovered to more than 90% after adding more than 20 wt % of PCL into the SH-SMP system. We investigated the effects of PCL concentration on the thermomechanical behavior, viscosity, and the self-healing capability of the SH-SMP system and performed the computational fluid dynamics simulations to study the effect of SH-SMP solution’s viscosity on the 3D printing process. Finally, we demonstrated the self-healing 4D printing application examples to show the merits of the SH-SMP system.


Copyright © 2005 Polymer.cn All rights reserved
中国聚合物网 版权所有
经营性网站备案信息

京公网安备11010502032929号

工商备案公示信息

京ICP证050801号

京ICP备12003651号