当前位置:群英聚首 > 论文著作 > 正文
【Biomater Sci】One-step hydrophobization of tannic acid for antibacterial coating on catheters to prevent catheter-associated infections
来源:石恒冲研究员个人网站 发布日期:2020-01-05
作者:Lin Liu, Hengchong Shi*, Jinghua Yin, Shifang Luan*
关键字:antibacterial coating
论文来源:期刊
发表时间:2019年
Catheter-associated infections (CAIs) caused by bacterial colonization are significant problems in clinics. Thus, effective antibacterial coatings for biomedical catheters to prevent bacterial infections are urgently needed. Ideal coatings should include the advantage of potent antibacterial properties and being easily and economically modified on the catheter surface. Due to their advantages of adhesive capability on various substrates, an increasing number of coatings based on plant polyphenols have been developed. However, the hydrophilicity of plant polyphenols limits their utilization in coatings. Herein, hydrophobic tannic acid (TA) was synthesized via the one-step electrostatic assembly of TA and benzalkonium chloride (BAC) with the green solvent water as the medium. The as-prepared hydrophobic TA (TBA) facilely formed a stable and colorless coating on the luminal and outer surface of biomedical catheters with broad-spectrum antibacterial activity and biocompatiblity. It was demonstrated that the TBA-coated surfaces displayed excellent bactericidal activity toward Gram-positive Staphylococcus aureus (S. aureus) and Gram-negative Escherichia coli (E. coli), and more than 99% of the above bacteria were killed by the TBA-coated films. The test of the coated catheters in vitro also showed the excellent antibacterial activity of both the outer and luminal surfaces of the catheter. Moreover, in an in vivo mouse model, the coated catheters relatively prevented bacterial colonization compared to the uncoated catheters. Meantime, no significant cytotoxicity and host response for Cell Counting Kit-8 (CCK-8) and tissue compatibility in vivo were observed, indicating the better biocompatibility of the TBA coating. This preparation method overcomes the limitation of the traditional hydrophilic tannic acid as a coating and provides a new method for preventing medical indwelling device-associated infections.
Copyright © 2005 Polymer.cn All rights reserved
中国聚合物网 版权所有
经营性网站备案信息

京公网安备11010502032929号

工商备案公示信息

京ICP证050801号

京ICP备12003651号