相关链接
联系方式
  • 通信地址:陕西省西安市长安区西北工业大学化学与化工学院
  • 邮编:710129
  • 电话:13772401347
  • 传真:
  • Email:happytw_3000@163.com
当前位置:> 首页 > 论文著作 > 正文
[J. Am. Chem. Soc.] Boron-Nitrogen-Embedded Polycyclic Aromatic Hydrocarbon-Based Controllable Hierarchical Self-Assemblies through Synergistic Cation-π and C-H···π Interactions for Bifunctional Photo- and Electro-Catalysis
作者:Zhelin Zhang, Xiao Hu, Shuai Qiu, Junlong Su, Rui Bai, Jian Zhang, and Wei Tian*
关键字:Cation-π and C-H···π Interactions, Hierarchical Self-Assemblies, Bifunctional catalysis
论文来源:期刊
具体来源:J. Am. Chem. Soc. 2024, 146, 11328-11341
发表时间:2024年

Boron-Nitrogen-embedded polycyclic aromatic hydrocarbons (BN-PAHs) as novel π-conjugated systems have attracted immense attention owing to their superior optoelectronic properties. However, constructing long-range ordered supramolecular assemblies based on BN-PAHs remains conspicuously scarce, primarily attributed to the constraints arising from coordinating multiple noncovalent interactions and the intrinsic characteristics of BN-PAHs, which hinder precise control over delicate self-assembly processes. Herein, we achieve the successful formation of BN-PAH-based controllable hierarchical assemblies through synergistically leveraged cation-π and C-H···π interactions. By carefully adjusting the solvent conditions in two progressive assembly hierarchies, the one-dimensional (1D) supramolecular assemblies with “rigid yet flexible” assembled units are first formed by cation-π interactions, and then they can be gradually fused into two-dimensional (2D) structures under specific C-H···π interactions, thus realizing the precise control of the transformation process from BN-PAH-based 1D primary structures to 2D higher-order assemblies. The resulting 2D-BNSA, characterized by enhanced electrical conductivity and ordered 2D layered structure, provides anchoring and dispersion sites for loading two appropriate nanocatalysts, thus facilitating the efficient photocatalytic CO2 reduction (with a remarkable CH4 evolution rate of 938.7 μmol g-1 h-1) and electrocatalytic acetylene semihydrogenation (reaching a Faradaic efficiency for ethylene up to 98.5%).

全文链接:https://doi.org/10.1021/jacs.4c00706.