84. Crystal growth pattern changes in low molecular weight poly(ethylene oxide) ultrathin films
			        作者:Guoliang Zhang, Yan Cao, Liuxin Jin, Ryan M. Van Horn, Bernard Lotz, Stephen Z.D. Cheng, Wei Wang*
关键字:Ultrathin film; PEO; Crystal pattern
论文来源:期刊
具体来源:Polymer
发表时间:2011年
A low molecular weight (MW) poly(ethylene oxide) (PEO) crystallized  in ultrathin films displays various crystal growth patterns in a  crystallization temperature (Tx) range from 20.0 °C to  50.0 °C. In succession, the following patterns are found: nearly  one-dimensional (1D) dendrite-like crystal patterns at Tx ≤ 38.0 °C, two-dimensional (2D) seaweed-like patterns between 39.0 °C ≤ Tx ≤ 42.0 °C and again, nearly 1D dendrite-like patterns at Tx ≥ 43.0 °C.  These transitions result from a complex interplay of varying growth  rates along different growth directions and preservation of growth  planes. Structural analysis carried out via electron diffraction  indicates that the dendrite-like crystals formed at the low and high Tx values differ by their fast growth directions: along the {120} normal at the low Tx values and along the (100) and (010) normal at the high Tx values. In the later case however, the major growth faces are still the {120}, this time tilted at 45° and indicating the a* and b axes growth tips. In the intermediate Tx  range (39.0 °C–42.0 °C), three growth directions coexist giving rise to  the seaweed morphology. The crystal growth rates at the low and high Tx  values are constant versus time. For the seaweed, a square-root  dependence is obtained. These differences are probably due to 1D and 2D  growth in the ultrathin films and are associated with different growth  patterns of the dendrites and the seaweed, respectively.