相关链接
联系方式
  • 通信地址:陕西省西安市长安南路199号 陕西师范大学 化学化工学院 079信箱
  • 邮编:710062
  • 电话:029-81530828
  • 传真:
  • Email:yangpeng@snnu.edu.cn
当前位置:> 首页 > 论文著作 > 正文
[Adv. Mater.] Two-Dimensional Protein Supramolecular Nanofilm with Exceptionally Large Area and Emergent Functions
作者:Dehui Wang, Yuan Ha, Jin Gu, Qian Li, Liangliang Zhang, Peng Yang*
关键字:lysozyme, amyloid, supramolecular assembly, nanofilm, surface modification
论文来源:期刊
具体来源:Advanced Materials 2016, in press (adma.201506476)
发表时间:2016年
The development of versatile materials and engineering devices requires multifunctional conformal coatings that gains increasing interests. However, few methods can achieve a stable, large-area and colorless coating on substrates with different structure, composition and shapes. We report the one-step aqueous coating of virtually arbitrary material surfaces using self-assembled macroscopic bionanofilm made by pure lysozyme. The unfolding and subsequent phase transition of commercially available lysozyme initiates the spontaneous formation of 2D amyloid-like nanofilm at a vapor/liquid or liquid/solid interface with a macro-scale size (e.g. 20 inches in diagonal) and shape in a few minutes. The attachment of the nanofilm onto various surfaces could be accordingly achieved by the amyloid-mediated adhesion, and the robust adhesion stability supports the nanofilm to safely pass the adhesive tape peeling test. The nanofilm coating displays competitive advantages over existing alternatives including controlled thickness from nano to micro-scale, colorless and optical transparency, stable bonding strength, ordered internal and surface morphology, as well as thermal/chemical stability. Multifunctions on the nanofilm coating have been demonstrated through great implications in both top-down and bottom-up micro/nano-scale interfacial engineering including surface modification, all-water-based photo/electron beam-lithography and electroless deposition. This finding deciphers an unbeknown interfacial assembly function for proteins that is useful to achieve a 2D biological material with the properties being useful in practical implications.