相关链接
联系方式
  • 通信地址:福建省福州市仓山区上三路32号
  • 邮编:350117
  • 电话:0591-22868205
  • 传真:
  • Email:yhhan@fjnu.edu.cn
当前位置:> 首页 > 论文著作 > 正文
Arsenic-resistance mechanisms in bacterium Leclercia adecarboxylata strain As3-1: Biochemical and genomic analyses
作者:Yong-He Han, Dai-Xia Yin, Meng-Ru Jia, Shan-Shan Wang, Yanshan Chen, Bala Rathinasabapathi, Deng-Lon
关键字:Arsenate reductase gene,Operon,Tetrathionate,Arsenic-dependent growth,Horizontal gene transfer (HGT)
论文来源:期刊
具体来源:Science of The Total Environment
发表时间:2019年
Microbial arsenic transformation is important in As biogeochemical cycles in the environment. In this study, a new As-resistant bacterial strain Leclercia adecarboxylata As3-1 was isolated and its associated mechanisms in As resistance and detoxification were evaluated based on genome sequencing and gene annotations. After subjecting strain As3-1 to medium containing arsenate (AsV), AsV reduction occurred and an AsV-enhanced bacterial growth was observed. Strain As3-1 lacked arsenite (AsIII) oxidation ability and displayed lower AsIII resistance than AsV, probably due to its higher AsIII accumulation. Polymerase chain reaction and phylogenetic analysis showed that strain As3-1 harbored a typical AsV reductase gene (arsC) on the plasmids. Genome sequencing and gene annotations identified four operons phoUpstBACS, arsHRBC, arsCRDABC and ttrRSBCA, with 8 additional genes outside the operons that might have involved in As resistance and detoxification in strain As3-1. These included 5 arsC genes explaining why strain As3-1 tolerated high AsV concentrations. Besides ArsC, TtrB, TtrC and TtrA proteins could also be involved in AsV reduction and consequent energy acquisition for bacterial growth. Our data provided a new example of diverse As-regulating systems and AsV-enhanced growth without ArrA in bacteria. The information helps to understand the role of As in selecting microbial systems that can transform and utilize As.