writer:Wang, Huanhuan;Wang, Huaguang;Liu, Xiaoli;Zhang, Zexin
keywords:colloid, microrobots, heparin-mimicking polymers
source:期刊
specific source:Journal of Colloid and Interface Science
Issue time:2025年
Coagulation within blood vessels is a major cause of cardiovascular disease and global mortality, highlighting the urgent need for effective anticoagulant strategies. In this study, we introduce a dynamic and highly efficient anticoagulant platform, achieved through the fabrication of a novel colloidal microrobot with unique functional properties. The microrobot is a Janus colloidal sphere with one hemisphere coated with heparin-mimicking polymers and the other with gold. This structure endows the microrobot with self-propulsion capabilities, powered by biocompatible near-infrared (NIR) irradiation, without the need for chemical fuel. The heparinmimicking polymers not only prevent blood clotting but also promote endothelial cell growth while inhibiting the proliferation of smooth muscle cells. Additionally, the self-propulsion feature allows the microrobot to travel long distances within blood vessels and precisely target sites for anticoagulation. Our work validates an approach for the production of biofunctionalized microrobots, which introduces a novel avenue for anticoagulation application through the development of innovative biofunctionalized colloidal devices.
论文链接: https://doi.org/10.1016/j.jcis.2025.137345