相关链接
联系方式
  • 通信地址:西安市学府中路
  • 邮编:710021
  • 电话:QQ353770635
  • 传真:
  • Email:xatuzhou@163.com
当前位置:> 首页 > 最新动态 > 正文
可逆粘附凝胶制备及其柔性传感器研究论文被Journal of Colloid and Interface Science接受!

恭喜双利!

感谢审稿人提出的宝贵意见和建议!

该工作得到了国家自然科学青年基金、陕西省高校青年杰出人才计划,陕西省青年科技新星项目,陕西省自然科学基础研究计划、陕西省高校科协青年人才托举计划项目的资助。

文章链接:

https://www.sciencedirect.com/science/article/pii/S0021979721014399

文章题目:

Mussel-inspired Self-Adhesive Hydrogels by Conducting Free Radical Polymerization in both Aqueous Phase and Micelle Phase and their Applications in Flexible Sensors

文章摘要:

Polydopamine (PDA)-based self-adhesive hydrogel sensors are extensively explored but it is still a challenge to construct PDA-based hydrogels by free radical polymerization. Herein, a new approach to construct self-adhesive hydrogels by conducting free radical polymerization in both aqueous phase and micelle phase is developed. The following two-phase polymerization processes account for the formation of the self-adhesive hydrogels. The first one is the polymerization of acrylamide (AM) and dopamine (DA) in aqueous phase to form adhesive component PAM-PDA (PAM, polyacrylamide; PDA, polydopamine).  The second one is the polymerization of hydrophobic monomer 2-methoxyethyl acrylate (MEA) in micelles of an amphiphilic block copolymer Pluronic F127 diacrylate (F127DA). The poly(2-methoxyethyl acrylate) (PMEA) networks help to maintain the high robustness of the hydrogel. Because PMEA and PDA form in relatively separated phases, the inhibition effect of PDA on the free radical polymerization process of PMEA is weakened. Based on this mechanism, mechanically strong and adhesive hydrogels are achieved. The introduced ions during preparation process, such as Na+, OHand K+, endow the resulting hydrogels ionic conductivity. Resistive strain sensor of the hydrogel achieves a high gauge factor (GF) of 5.26, a response time of 0.25 s and high sensing stability. Because of the adhesiveness, such hydrogel sensor can be applied as wearable sensors in monitoring various human motions. To further address the freezing and drying problems of the hydrogels, organohydrogels are constructed in glycerol-water mixed solvent. The organohydrogels exhibit outstanding anti-freezing property and moisture retention ability, and their adhesiveness is well maintained in subzero conditions. Capacitive pressure sensors of the organohydrogels possessing a GF of 2.05 kPa-1, high sensing stability and reversibility, are demonstrated and explored in monitoring diverse human motions.