动物肌肉是自然界中最高效的柔性驱动器,对于人工肌肉的发展起到了重要的启发作用。在众多人造智能材料中,液晶弹性体(LCE)具有与天然肌肉相似的可逆线性驱动应变能力。最近的研究表明,当LCE制成纤维时,其较大的比表面积使其能够实现与天然肌肉类似的超快速驱动。然而,单根纤维无法为实际应用提供足够的力量,多根纤维合并使用时驱动速度会因为比表面积的减小而降低。因此,人工肌肉目前还未能以实际应用的尺寸实现与动物肌肉相当的快速线性驱动。此外大多数基于智能材料(包括LCE)的人工肌肉的环境适应性有限,主要应用场景都局限于空气环境中,难以像水生动物的肌肉一样支持软体机器人的水下运动。即便已有基于介电弹性体的人工肌肉实现了深海驱动,但其线性变形有限,并且受到破坏时会快速失效,工作鲁棒性不足。
图4. 平结人工肌肉在浅/深水环境中的应用。(a)人工肌肉驱动的桨的示意图;(b)绳结人工肌肉驱动的桨在浅水下的运动情况;(c)绳结人工肌肉驱动的桨在浅水下以1hz的频率驱动的拍动情况;(d)绳结人工肌肉驱动的桨在3000m水下的运动情况;(e)绳结人工肌肉驱动的桨在3000m水下以1hz的频率驱动的拍动情况;(f)用绳结人工肌肉驱动小船的过程。
这项工作为人工肌肉提供了一种新的结构设计原则,解决了人工肌肉驱动速度不足,适应性与鲁棒性有限的问题。并且,这些仿生绳结人工肌肉有望实现更大规模的生产与更广泛的应用场景拓展,为虚拟现实体验、微创手术、水质监测和深海探索等应用领域提供了创新的解决方案。相关研究在《Advanced Materials》发表题为“Knotted Artificial Muscles for Bio-mimetic Actuation under Deepwater”的研究论文。北京大学博士生陈雯慧为第一作者,北京大学刘珂研究员,中科院沈阳自动化所王聪副研究员与北京大学杨槐教授为共同通讯作者。本工作获得了国家重点研发计划“智能机器人”专项的支持。
文章链接:https://doi.org/10.1002/adma.202400763
- 四川大学叶林教授团队 Small:具有稳定致动行为的新型聚甲醛纤维基人工肌肉的构筑 2025-06-26
- 南开刘遵峰教授课题组招收2026年入学推免硕士、直博生等 - 材料学、化学、高分子、生物学、纺织与纤维、计算模拟、电子信息... 2025-06-13
- 广东工业大学邱学青教授/朱东雨副教授 Small: 基于木质素微观结构调控构建全生物质基大裂纹自修复人工肌肉 2025-04-18
- 南京大学成义祥教授等 Angew:原位光聚合手性共组装液晶刚性网格发光体应用于CP-EL的EMLs材料 2025-07-15
- 华南理工大学王林格教授团队 Small:以聚合诱导自组装方法制备与调控具有刚性直链成核链段的球状液晶纳米颗粒 2025-07-13
- 中南民族大学秦四勇、黄蓉团队 AFM:具有分层结构的可注射肽液晶水凝胶指导成肌细胞排列 - 促进肌肉功能恢复 2025-07-09
- 天津大学潘莉教授团队 CEJ:具有双晶网络的乙烯-丙烯嵌段共聚物 - 高性能弹性体及HDPE/iPP共混物的升级回收 2025-07-20