相关链接
联系方式
  • 通信地址:重庆市北碚区天生路2号
  • 邮编:400710
  • 电话:023-68251228
  • 传真:
  • Email:lufei2111217@iccas.ac.cn
当前位置:> 首页 > 个人简介
个人简介

陆飞,博士,西南大学蚕桑纺织与生物质科学学院,副教授/硕士生导师。学士、硕士和博士毕业于天津工业大学,中国科学院化学研究所博士后。先后主持/参研多项科研项目,包括国家自然科学基金、重庆自然科学基金、中央高校基本业务费项目等;在各类SCI收录期刊上发表学术论文40余篇,其中ESI高被引论文1篇,他引1500余次,H指数24;授权/申请国家发明专利10余项。

陆飞博士主要从事纺织科学,材料科学,化学,生物技术前沿交叉研究,并围绕(1)生物质纤维材料,(2)生物医用高分子材料,(3)多糖类材料流变特性及表界面调控展开工作。实验室主要致力于用物理与化学方法设计具有特殊功能表界面结构的生物质材料,用以解决创面愈合,创伤止血及血栓溶栓方面的问题。研究方向包括但不限于:


1)通过先进成型方法(例如静电纺和溶液喷射)构建微纳纤维材料,并对其表面进行结构设计和调控,获得具有多功能协同作用的表界面,以期实现对创伤的高效止血与快速愈合;

2)针对体内出血点与血栓微环境的特点,通过化学合成、修饰、层层组装等方法构筑具有自适应调控特征的纳米载药体系,实现药物的高效负载、以及对出血/血栓点的精准靶向与可控释药。


联系方式:

E-mail: lufei2111217@iccas.ac.cn;lufei211@swu.edu.cn


发表论文:

[1] Wang Y, Wang H, Lu B, Yu K, Xie R, Lan G, Xie J, Hu E, Lu F. A sandwich-like silk fibroin/polysaccharide composite dressing with continual biofluid draining for wound exudate management. International Journal of Biological Macromolecules. 2023;253.

[2] Zhou G, Lu F, Shang S, Shou D, Wang W, Yu K, Xie R, Lan G, Hu E. Gas-jet propelled hemostats for targeted hemostasis in wounds with irregular shape and incompressibility. Journal of Materials Chemistry B. 2023;11:3885.

[3] Xu Q, Hu E, Qiu H, Liu L, Li Q, Lu B, Yu K, Lu F, Xie R, Lan G, Zhang Y. Catechol-chitosan/carboxymethylated cotton-based Janus hemostatic patch for rapid hemostasis in coagulopathy. Carbohydrate Polymers. 2023;315.

[4] Xiong L, Wang H, Wang J, Luo J, Xie R, Lu F, Lan G, Ning L-J, Yin R, Wang W, Hu E. Facilely Prepared Thirsty Granules Arouse Tough Wet Adhesion on Overmoist Wounds for Hemostasis and Tissue Repair. ACS applied materials & interfaces. 2023;15:49035.

[5] Lu B, Hu E, Ding W, Wang W, Xie R, Yu K, Lu F, Lan G, Dai F. Bioinspired Hemostatic Strategy via Pulse Ejections for Severe Bleeding Wounds. Research. 2023;6.

[6] Liu L, Hu E, Qiu H, Xu Q, Yu K, Xie R, Lu F, Wang Q, Lu B, Li Q, Lan G. Dual modes reinforced silk adhesives for tissue repair: Integration of textiles and inorganic particles in silk gel for enhanced mechanical and adhesive strength. International Journal of Biological Macromolecules. 2023;242.

[7] Li Q, Hu E, Yu K, Xie R, Lu F, Lu B, Bao R, Dai F, Lan G. Gemini Dressing with Both Super-hydrophilicity and -hydrophobicity Pursuing Isolation of Blood Cells for Hemostasis and Wound Healing. Advanced Fiber Materials. 2023;5:1447.

[8] Shi Z, Lan G, Hu E, Lu F, Qian P, Liu J, Dai F, Xie R. Targeted delivery of hemostats to complex bleeding wounds with magnetic guidance for instant hemostasis. Chemical Engineering Journal. 2022;427.

[9] Qiu H, Lan G, Ding W, Wang X, Wang W, Shou D, Lu F, Hu E, Yu K, Shang S, Xie R. Dual-Driven Hemostats Featured with Puncturing Erythrocytes for Severe Bleeding in Complex Wounds. Research. 2022;2022.

[10] Lu B, Hu E, Xie R, Yu K, Lu F, Bao R, Wang C, Lan G, Dai F. Microcluster colloidosomes for hemostat delivery into complex wounds: A platform inspired by the attack action of torpedoes. Bioactive Materials. 2022;16:372.

[11] Li Y, Zhang Y, Wang Y, Yu K, Hu E, Lu F, Shang S, Xie R, Lan G. Regulating wound moisture for accelerated healing: A strategy for the continuous drainage of wound exudates by mimicking plant transpiration. Chemical Engineering Journal. 2022;429.

[12] Yuan Z, Cheng J, Lan G, Lu F. A cellulose/Konjac glucomannan-based macroporous antibacterial wound dressing with synergistic and complementary effects for accelerated wound healing. Cellulose. 2021;28:5591.

[13] Wang Y, Lu F, Hu E, Yu K, Li J, Bao R, Dai F, Lan G, Xie R. Biogenetic Acellular Dermal Matrix Maintaining Rich Interconnected Microchannels for Accelerated Tissue Amendment. Acs Applied Materials & Interfaces. 2021;13:16048.

[14] Lu B, Hu E, Xie R, Yu K, Lu F, Bao R, Wang C, Lan G, Dai F. Magnetically Guided Nanoworms for Precise Delivery to Enhance In Situ Production of Nitric Oxide to Combat Focal Bacterial Infection In Vivo. Acs Applied Materials & Interfaces. 2021;13:22225.

[15] Liu Y, Yu K, Shang S, Xie R, Lu F, Bao R, Lan G, Hu E. Chestnut-like macro-acanthosphere triggered hemostasis: a featured mechanism based on puncturing red blood cells. Nanoscale. 2021;13:9843.

[16] Liu L, Hu E, Yu K, Xie R, Lu F, Lu B, Bao R, Li Q, Dai F, Lan G. Recent advances in materials for hemostatic management. Biomaterials Science. 2021;9:7343.

[17] Li Q, Hu E, Yu K, Lu M, Xie R, Lu F, Lu B, Bao R, Lan G. Magnetic field-mediated Janus particles with sustained driving capability for severe bleeding control in perforating and inflected wounds. Bioactive Materials. 2021;6:4625.

[18] Zou Y, Xie R, Hu E, Qian P, Lu B, Lan G, Lu F. Protein-reduced gold nanoparticles mixed with gentamicin sulfate and loaded into konjac/gelatin sponge heal wounds and kill drug-resistant bacteria. International Journal of Biological Macromolecules. 2020;148:921.

[19] Zhou L, Yu K, Lu F, Lan G, Dai F, Shang S, Hu E. Minimizing antibiotic dosage through in situ formation of gold nanoparticles across antibacterial wound dressings: A facile approach using silk fabric as the base substrate. Journal of Cleaner Production. 2020;243.

[20] Wang Y, Xie R, Li Q, Dai F, Lan G, Shang S, Lu F. A self-adapting hydrogel based on chitosan/oxidized konjac glucomannan/AgNPs for repairing irregular wounds. Biomaterials Science. 2020;8:1910.

[21] Shi Z, Lan G, Hu E, Lu F, Qian P, Liu J, Dai F, Xie R. Puff pastry-like chitosan/konjac glucomannan matrix with thrombin-occupied microporous starch particles as a composite for hemostasis. Carbohydrate Polymers. 2020;232.

[22] Li Q, Hu E, Yu K, Xie R, Lu F, Lu B, Bao R, Zhao T, Dai F, Lan G. Self-Propelling Janus Particles for Hemostasis in Perforating and Irregular Wounds with Massive Hemorrhage. Advanced Functional Materials. 2020;30.

[23] Lan G, Li Q, Lu F, Yu K, Lu B, Bao R, Dai F. Improvement of platelet aggregation and rapid induction of hemostasis in chitosan dressing using silver nanoparticles. Cellulose. 2020;27:385.

[24] Ran L, Zou Y, Cheng J, Lu F. Silver nanoparticles in situ synthesized by polysaccharides from Sanghuangporus sanghuang and composites with chitosan to prepare scaffolds for the regeneration of infected full-thickness skin defects. International Journal of Biological Macromolecules. 2019;125:392.

[25] Li Q, Lu F, Shang S, Ye H, Yu K, Lu B, Xiao Y, Dai F, Lan G. Biodegradable Microporous Starch with Assembled Thrombin for Rapid Induction of Hemostasis. Acs Sustainable Chemistry & Engineering. 2019;7:9121.

[26] Wu T, Lu F, Wen Q, Yu K, Lu B, Rong B, Dai F, Lan G. Novel strategy for obtaining uniformly dispersed silver nanoparticles on soluble cotton wound dressing through carboxymethylation and in-situ reduction: antimicrobial activity and histological assessment in animal model. Cellulose. 2018;25:5361.

[27] Lu B, Lu F, Ran L, Yu K, Xiao Y, Li Z, Dai F, Wu D, Lan G. Imidazole-molecule-capped chitosan-gold nanocomposites with enhanced antimicrobial activity for treating biofilm-related infections. Journal of Colloid and Interface Science. 2018;531:269.

[28] Lu B, Lu F, Ran L, Yu K, Xiao Y, Li Z, Dai F, Wu D, Lan G. Self-assembly of natural protein and imidazole molecules on gold nanoparticles: Applications in wound healing against multi-drug resistant bacteria. International Journal of Biological Macromolecules. 2018;119:505.

[29] Li Q, Lu F, Ye H, Yu K, Lu B, Bao R, Xiao Y, Dai F, Lan G. Silver Inlaid with Gold Nanoparticles: Enhanced Antibacterial Ability Coupled with the Ability to Visualize Antibacterial Efficacy. Acs Sustainable Chemistry & Engineering. 2018;6:9813.

[30] Chen H, Lan G, Ran L, Xiao Y, Yu K, Lu B, Dai F, Wu D, Lu F. A novel wound dressing based on a Konjac glucomannan/silver nanoparticle composite sponge effectively kills bacteria and accelerates wound healing. Carbohydrate Polymers. 2018;183:70.

[31] Chen H, Cheng J, Ran L, Yu K, Lu B, Lan G, Dai F, Lu F. An injectable self-healing hydrogel with adhesive and antibacterial properties effectively promotes wound healing. Carbohydrate Polymers. 2018;201:522.

[32] Yu K, Lu F, Li Q, Zou Y, Xiao Y, Lu B, Liu J, Dai F, Wu D, Lan G. Accelerated wound-healing capabilities of a dressing fabricated from silkworm cocoon. International Journal of Biological Macromolecules. 2017;102:901.

[33] Lu F, Zhang C, Lu B, Yu K, Liu J, Kang H, Liu R, Lan G. Cellobiose as a model compound for cellulose to study the interactions in cellulose/lithium chloride/N-methyl-2pyrrolidone systems. Cellulose. 2017;24:1621.

[34] Lu B, Lu F, Zou Y, Liu J, Rong B, Li Z, Dai F, Wu D, Lan G. In situ reduction of silver nanoparticles by chitosan-L-glutamic acid/hyaluronic acid: Enhancing antimicrobial and wound-healing activity. Carbohydrate Polymers. 2017;173:556.

[35] Liu J, Lu F, Chen H, Bao R, Li Z, Lu B, Yu K, Dai F, Wu D, Lan G. Healing of skin wounds using a new cocoon scaffold loaded with platelet-rich or platelet-poor plasma. Rsc Advances. 2017;7:6474.

[36] Li Q, Lu F, Zhou G, Yu K, Lu B, Xiao Y, Dai F, Wu D, Lan G. Silver Inlaid with Gold Nanoparticle/Chitosan Wound Dressing Enhances Antibacterial Activity and Porosity, and Promotes Wound Healing. Biomacromolecules. 2017;18:3766.

[37] Zhang C, Li P, Zhang Y, Lu F, Li W, Kang H, Xiang J-f, Huang Y, Liu R. Hierarchical porous structures in cellulose: NMR relaxometry approach. Polymer. 2016;98:237.

[38] Tang F, Lv L, Lu F, Rong B, Li Z, Lu B, Yu K, Liu J, Dai F, Wu D, Lan G. Preparation and characterization of N-chitosan as a wound healing accelerator. International Journal of Biological Macromolecules. 2016;93:1295.

[39] Lu F, Zhang C, Kang H, Huang Y, Liu R. Extensional rheology of cellulose/NaOH/urea/H2O solutions. Cellulose. 2016;23:2877.

[40] Lu F, Wang L, Zhang C, Cheng B, Liu Ry, Huang Y. Influence of temperature on the solution rheology of cellulose in 1-ethyl-3-methylimidazolium chloride/dimethyl sulfoxide. Cellulose. 2015;22:3077.

[41] Wang L, Gao L, Cheng B, Ji X, Song J, Lu F. Rheological behaviors of cellulose in 1-ethyl-3-methylimidazolium chloride/dimethylsulfoxide. Carbohydrate Polymers. 2014;110:292.

[42] Lu F, Wang L, Ji X, Cheng B, Song J, Gou X. Flow behavior and linear viscoelasticity of cellulose 1-allyl-3-methylimidazolium formate solutions. Carbohydrate Polymers. 2014;99:132.

[43] Lu F, Song J, Cheng B-W, Ji X-J, Wang L-J. Viscoelasticity and rheology in the regimes from dilute to concentrated in cellulose 1-ethyl-3-methylimidazolium acetate solutions. Cellulose. 2013;20:1343.

[44] Lu F, Cheng B, Song J, Liang Y. Rheological characterization of concentrated cellulose solutions in 1-allyl-3-methylimidazolium chloride. Journal of Applied Polymer Science. 2012;124:3419.