相关链接
联系方式
  • 通信地址:重庆市北碚区天生路2号
  • 邮编:400710
  • 电话:023-68251228
  • 传真:
  • Email:lufei2111217@iccas.ac.cn
当前位置:> 首页 > 论文著作 > 正文
(2023高被引)An injectable self-healing hydrogel with adhesive and antibacterial properties effectively promotes wound healing
作者:Chen, Honglei; Cheng, Junwen; Ran, Luoxiao; Yu, Kun; Lu, Bitao; Lan, Guangqian; Dai, Fangying; Lu, F
关键字:Oxidized konjac glucomannan
论文来源:期刊
具体来源:Carbohydrate Polymers
发表时间:2018年
Hydrogels with self-healing capacity can undergo self-repair, establishing safer and longer-lasting products. Hydrogel wound dressings showing self-healing capacity can prolong the lifespan of the material and provide better wound protection. Therefore, in this study, Schiff base reactions (reversible imine linkages) were utilized to design injectable self-healing hydrogels with chitosan and konjac glucomannan. Oxidized konjac glucomannan was used to react with chitosan to form hydrogel. In addition to injectable, self-healing properties, the hydrogels also had adhesive and antibacterial properties, were biocompatible, and promoted wound healing. The inhibition rates of hydrogels against Staphylococcus aureus and Escherichia coll. were 96% and 98%, respectively. In addition, microscopy and rheological analyses showed that the hydrogels healed within 4 h without additional exogenous stimulation. Finally, the developed hydrogels were injectable and significantly shortened wound recovery time in a full-thickness skin defect model. Thus, our findings established a novel hydrogel material that may have applications in wound healing.