随着人机交互、物联网及可穿戴电子等技术的蓬勃发展,柔性传感器和储能设备迫切需要具有优良导电性和良好机械性能的多功能材料。轻质、弹性的气凝胶具有结构可调、密度低、孔隙率高等特点,是开发高性能多功能平台的重要候选材料之一。设计具有工程性结构和组分的MXene基气凝胶,以促进电子传输和应力传递,是获得理想多功能骨架的有效途径。为此,天津科技大学司传领教授、徐婷副教授与德国哥廷根大学张凯教授合作,提出利用纳米纤维素(CNF)与MXene的氢键协同作用,采用双向冻结的方法制备了具有工程仿生结构的多功能CNF/CNT/MXene气凝胶,展示出优异的机械强度和高导电性。首先,CNF与MXene之间的静电斥力可避免MXene纳米片的堆积;其次,缠绕的CNF与CNT作为“砂浆”与管胞结构的MXene“砖块”结合可产生良好的界面相互作用;再者,有序的工程结构可有效实现电子传输和应力传递。所构建的CNF/CNT/MXene气凝胶作为压力传感器,具有优异的传感性能,在人体生物信号采集方面具有广泛的应用前景。气凝胶还可以作为压缩固态超级电容器的电极材料,具有较高的电化学性能和优异的长周期压缩性能。此项研究工作发表在《Nano-Micro Letters》上,并被遴选为封面文章(Cover Story,图1),天津科技大学为第一完成单位。
图1. 论文被遴选为封面。
图2. (a)CNF/CNT/MXene气凝胶制备示意图。(b)放置在蒲公英顶部的轻质CNF/CNT/MXene气凝胶的照片。(c)MXene和不同CNF/CNT/MXene气凝胶的FTIR及(d)XRD图谱。
图3. CNT/MXene(1:7)气凝胶俯视图(a, b)和侧视图(c)。CNF/CNT/MXene(2:1:7)气凝胶的俯视图(d, e)和侧视图(f),插图为孔隙结构示意图。(g)CNF/CNT/MXene气凝胶(2:1:7)压缩释放过程示意图。(h)与其他MXene基气凝胶的导电性能比较。
图4. (a)CNT/MXene(1:7)和CNF/CNT/MXene(2:1:7)气凝胶第一次压缩循环的实验照片。(b)第一次循环后不可逆变形百分比的直方图,插图为第一次循环后的样品高度对比照片。(c)40%~80%压缩应变下CNF/CNT/MXene(2:1:7)气凝胶的应力-应变曲线。(d)50%应变下1000次循环的应力应变曲线,(e)80%应变下100次循环的应力应变曲线。(f)CNF/CNT/MXene(2:1:7)气凝胶与MXene-和碳基气凝胶的应力保持比较。(g)CNF/CNT/MXene(2:1:7)气凝胶压缩变形机理说明。
图5. (a)相对电流的变化与压力传感器线性灵敏度的关系。(b)20%-80%不同压缩应变下的电流响应。(c)电流稳定性在20%应变2000循环。(d)应用于人类行为监测的图解。电流信号来自(e)肘部摆动,(f)手腕弯曲,(g)正常工作,(h)手指接触。
全文链接:Ting Xu, Qun Song, Kun Liu, Huayu Liu, Junjie Pan, Wei Liu, Lin Dai, Meng Zhang, Yaxuan Wang, Chuanling Si*, Haishun Du*, Kai Zhang*. Nanocellulose-Assisted Construction of Multifunctional MXene-Based Aerogels with Engineering Biomimetic Texture for Pressure Sensor and Compressible Electrode. Nano-Micro Lett. 15, 98 (2023). https://doi.org/10.1007/s40820-023-01073-x
- 华工方志强/川大王静禹/广工邱学青《ACS Nano》:折纸龙结构启发的高韧性、高延展性纳米纤维素薄膜 2025-08-31
- 华东师范大学张强课题组《Sci. Adv.》:基于纳米纤维素制备高强度、高柔韧性的全降解生物质泡沫材料 2025-08-08
- 中国农业科学院麻类研究所侯春生研究员团队 ACS Nano:黄麻纳米纤维素精准调控肠道菌群,重建微塑料损伤的肠道微生态平衡 2025-07-04
- 香港城市大学吴伟教授 ACS Nano:仿生发汗电池热管理设计实现自适应高效冷却与阻燃保护 2025-09-04
- 浙理工胡毅教授 Adv. Funct. Mater.:仿生竹节结构复合电解质为全固态锂金属电池提供新路径 2025-09-03
- 华工凌子夜、方晓明等Mater. Horiz.封面文章:腌制黄瓜启发的离子渗透策略-打造兼具超高强度与高储热性的刺激响应相变凝胶 2025-08-24
- 新疆大学吐尔逊·阿不都热依木教授团队 JCIS/CEJ:高分子材料助力MXene基超级电容器的构筑及其性能研究 2025-08-14