自修复弹性体在受损后能够全部或部分修复其性能,在航空航天、交通运输、可穿戴电子器件和传感器等领域具有广阔的应用前景。为了实现自修复性能,需要在弹性体中构筑氢键、配位键、离子键和π-π作用等动态键,这些动态键虽然可以赋予弹性体较高的自修复效率,但是其键能较低,使得弹性体的力学性能较差(拉伸强度往往低于4MPa,断裂韧性往往低于1kJ/m2)。
学习高强度水凝胶设计的思想,可以在自修复网络中引入共价键网络,提高弹性体的力学性能,但是动态网络的极性通常较大,而共价键网络的极性通常较小,二者在没有共溶剂的条件下会发生相分离。
为了克服这个问题,四川大学吴锦荣副教授与哈佛大学蔡历恒博士和David A. Weitz教授合作,设计并制备出一种分子链上带酰胺键,端基为氨基或羧酸基的超支化分子,将该超支化分子的端氨基和端羧酸反应交联,获得一种弹性体。
图1. 高性能自修复弹性体的分子设计。a, 合成过程。b, 超支化分子的示意图。c, 杂化网络的示意图。d, DSC热流曲线。
该弹性体中酰胺键形成氢键网络,支化点形成共价键网络。氢键网络在应力作用下优先断键,耗散能量,并且赋予弹性体较高的自修复性能,而共价键网络则赋予材料较高的力学性能。此外,该弹性体在拉伸作用下出现特殊的“宏观银纹”。与塑料中观察到的银纹不同,“宏观银纹”的尺度为1μm—1000μm,断裂面之间由多层薄片连接,而且“宏观银纹”遍及整个样条。“宏观银纹”的产生进一步耗散能量,使得材料的断裂韧性达13.5 kJ/m2,拉伸强度达19.5MPa,与天然橡胶相当。优异的性能使得该自修复弹性体可望在高性能阻尼材料和结构材料等领域得到应用。
图2. 力学性能和拉伸过程中的形貌演变. a, 拉伸过程中样品的光学照片。b, 拉伸应力应变曲线。c, 拉伸过程中在线SEM观测“宏观银纹”。
以上工作近期发表在《Advance Materials》上(Adv. Mater. 2017, 1702616),该工作得到国家自然科学基金委、高分子材料工程国家重点实验室、美国自然科学基金委和美国国立卫生研究院的支持。
论文链接:http://onlinelibrary.wiley.com/doi/10.1002/adma.201702616/full
- 清华徐军、中药所邱崇 Sci. Adv.: 高强韧、抗损伤、体温形状记忆的高性能医用弹性体 2025-06-15
- 北化马志勇课题组 Macromolecules:双螺力敏色团ABPX在单/双网络弹性体中的力致变色与光致变色机理差异 2025-06-12
- 郑大付鹏教授、张袁铖副教授/新国大何超斌教授 Adv. Sci.:动态键增强聚酰胺弹性体的4D打印 - 助力高性能生物医学矫形 2025-06-10
- 广西大学赵辉课题组 CEJ 综述:高强度自修复高分子材料的研究进展 - 机械强度与修复效率的平衡 2025-06-12
- 东华大学游正伟教授、孙俊芬教授 Angew:氟氢键纳米限域策略同步提升弹性体的强度、韧性和自修复性 2025-06-03
- 深圳技术大学史济东等 Carbon:基于石墨烯-纳米纤维素复合薄膜的自修复应变/湿度双模传感器的设计及在可穿戴呼吸监测的应用 2025-05-28