相关链接
联系方式
  • 通信地址:北京市海淀区中关村北二街1号
  • 邮编:100190
  • 电话:010-82544991
  • 传真:
  • Email:ybzhuang@ipe.ac.cn
当前位置:> 首页 > 个人简介
个人简介

庄永兵,工学博士,中国科学院过程工程研究所研究员、博士生导师、中国科学院大学岗位教师。主要研究方向为高耐热聚合物(如聚酰亚胺)的设计与制备、聚合物膜材料的制备及应用(气体分离膜、介电薄膜、光学薄膜等)。2008年6月毕业于湖北省化学研究院,获高分子化学与物理硕士学位(导师为范和平研究员)。2011年6月毕业于四川大学高分子科学与工程学院(高分子材料工程国家重点实验室),获高分子科学与工程博士学位(导师为顾宜教授)。2011年7月开始在湖南文理学院工作;2013年01月至2015年01在韩国汉阳大学(Hanyang University)从事博士后研究工作(合作导师为Young Moo Lee教授及Michael D. Guiver教授);2015年02月至2015年12月在加拿大拉瓦尔大学(Laval University)从事博士后研究工作(合作导师为Denis Rodrigue教授及Serge Kaliaguine教授);2016年04月受日本学术振兴会(JSPS)资助在日本东京工业大学(Tokyo Institute of Technology)任外国人特别研究员(合作导师为Shinji Ando教授),曾担任多家高新技术企业技术顾问,为中国科学院大学《膜分离科学与技术》主讲教师,中国电工技术学会高级会员、中国化学会会员、中国化工学会会员、中国电工技术学会绝缘材料与绝缘技术专委会委员、《膜科学与技术》通讯编委。在《Progress in Polymer Science》、《Nature communications》、《Macromolecules》、《Science China Materials》、《Journal of membrane science》、《Chemical Communications》、 《Polymer Chemistry》、《Polymer》等杂志上发表论文30多篇,获授权专利10多项;参编著作一部。相关研究成果被众多综述期刊正面引用和评价(例如Chemical Reviews,2018,118(12): 5871-5911; Chemical Reviews,2018,118(18): 8655-8769;Progress in Polymer Science,2015,43: 1-32;Progress in Polymer Science,2019,91:80-125;Progress in Materials Science,2019,102: 222-295)。

主要论文:


[1] Zhang Y, Lee WH, Seong JG, Dai J, Feng S, Wan Y, et al. Effect of structural isomerism on physical and gas transport properties of Tr?ger''''''''s Base-based polyimides. Polymer. 2022;239:124412.

[2] Li X, Zhuang Y, Ran Q, Liu X. Oxidative evolution of Z/E-diaminotetraphenylethylene. Physical Chemistry Chemical Physics. 2022.

[3] Li X, Zhou L, Cheng Z, Ran Q, Wang X, Zhuang Y, et al. Synthesis of tautomerization-inhibited diamino substituted tetraphenylethene derivatives with different mechanochromisms: the vital role of chlorine. Materials Chemistry Frontiers. 2021;5:2387-98.

[4] Chen N, Wang HH, Kim SP, Kim HM, Lee WH, Hu C, et al. Poly(fluorenyl aryl piperidinium) membranes and ionomers for anion exchange membrane fuel cells. Nat Commun. 2021;12.

[5] Li S, Qi B, Luo J, Zhuang Y, Wan Y. Ultrafast selective adsorption of pretreatment inhibitors from lignocellulosic hydrolysate with metal-organic frameworks: Performance and adsorption mechanisms. Separation and Purification Technology. 2021;275.

[6] Dai J, Zhang Y, Wang G, Zhuang Y. Structural architectures of polymer proton exchange membranes suitable for high-temperature fuel cell applications. Science China-Materials. 2021.

[7] Yang C, Xu R, Tang S, Zhuang Y, Luo L, Liu X. Free H-Bonding Interaction Sites in Rigid-Chain Polymers and Their Filling Approach: A Molecular Dynamics Simulation Study. Advanced Theory and Simulations. 2021;4.

[8] Zhang Y, Lee WH, Seong JG, Bae JY, Zhuang Y, Feng S, et al. Alicyclic segments upgrade hydrogen separation performance of intrinsically microporous polyimide membranes. J Membr Sci. 2020;611.

[9] Hu X, Lee WH, Zhao J, Bae JY, Kim JS, Wang Z, et al. Troger''''''''s Base (TB)-containing polyimide membranes derived from bio-based dianhydrides for gas separations. J Membr Sci. 2020;610.

[10] Hu X, Lee WH, Zhao J, Kim JS, Wang Z, Yan J, et al. Thermally rearranged polymer membranes containing highly rigid biphenyl ortho-hydroxyl diamine for hydrogen separation. J Membr Sci. 2020;604.

[11] Zhang D, Seong JG, Lee WH, Ando S, Wan Y, Lee YM, et al. Effects of sulfonate incorporation and structural isomerism on physical and gas transport properties of soluble sulfonated polyimides. Polymer. 2020;191.

[12] Zhuang Y, Seong JG, Lee YM. Polyimides containing aliphatic/alicyclic segments in the main chains. Prog Polym Sci. 2019;92:35-88.

[13] Zhuang Y, Orita R, Fujiwara E, Zhang Y, Ando S. Colorless Partially Alicyclic Polyimides Based on Troger''''''''s Base Exhibiting Good Solubility and Dual Fluorescence/Phosphorescence Emission. Macromolecules. 2019;52:3813-24.

[14] Zhuang Y, Ando S. Evaluation of free volume and anisotropic chain orientation of Troger''''''''s base (TB)-based microporous polyimide/copolyimide membranes. Polymer. 2017;123:39-48.

[15] Zhuang Y, Seong JG, Do YS, Lee WH, Lee MJ, Guiver MD, et al. High-strength, soluble polyimide membranes incorporating Troger''''''''s Base for gas separation. J Membr Sci. 2016;504:55-65.

[16] Zhuang Y, Seong JG, Do YS, Lee WH, Lee MJ, Cui Z, et al. Soluble, microporous, Troger''''''''s Base copolyimides with tunable membrane performance for gas separation. Chem Commun. 2016;52:3817-20.

[17] Zhuang Y, Seong JG, Lee WH, Do YS, Lee MJ, Wang G, et al. Mechanically Tough, Thermally Rearranged (TR) Random/Block Poly(benzoxazole-co-imide) Gas Separation Membranes. Macromolecules. 2015;48:5286-99.

[18] Cui Z, Hassankiadeh NT, Zhuang Y, Drioli E, Lee YM. Crystalline polymorphism in poly(vinylidenefluoride) membranes. Prog Polym Sci. 2015;51:94-126.

[19] Wang G, Lee KH, Lee WH, Kang NR, Shin DW, Zhuang Y, et al. Soluble sulfonated polybenzothiazoles containing naphthalene for use as proton exchange membranes. J Membr Sci. 2015;490:346-53.

[20] Seong JG, Zhuang Y, Kim S, Do YS, Lee WH, Guiver MD, et al. Effect of methanol treatment on gas sorption and transport behavior of intrinsically microporous polyimide membranes incorporating Troger''''''''s base. J Membr Sci. 2015;480:104-14.

[21] Zhuang Y, Seong JG, Do YS, Jo HJ, Lee MJ, Wang G, et al. Effect of Isomerism on Molecular Packing and Gas Transport Properties of Poly(benzoxazole-co-imide)s. Macromolecules. 2014;47:7947-57.

[22] Zhuang Y, Seong JG, Do YS, Jo HJ, Cui Z, Lee J, et al. Intrinsically Microporous Soluble Polyimides Incorporating Troger''''''''s Base for Membrane Gas Separation. Macromolecules. 2014;47:3254-62.

[23] Wang G, Lee KH, Lee WH, Shin DW, Kang NR, Cho DH, et al. Durable Sulfonated Poly(benzothiazole-co-benzimidazole) Proton Exchange Membranes. Macromolecules. 2014;47:6355-64.

[24] Zhuang Y, Gu Y. Molecular Packing in Crystalline Domains of Unsymmetrical Poly(benzoxazole-imide): Investigation using Modeling of a Model Compound. J Macromol Sci B. 2013;52:1603-12.

[25] Zhuang Y, Gu Y. Poly(benzoxazole-amide-imide) copolymers for interlevel dielectrics: interchain hydrogen bonding, molecular arrangement and properties. Journal of Polymer Research. 2013;20.

[26] Zhuang Y, Liu X, Gu Y. Molecular packing and properties of poly(benzoxazole-benzimidazole-imide) copolymers. Polymer Chemistry. 2012;3:1517-25.

[27] Zhuang Y, Gu Y. Probing structural evolution of the poly(amic acid) containing benzoxazole moieties in backbone during thermal imidization. Journal of Polymer Research. 2012;19.

[28] Zhuang Y, Gu Y. Novel Poly(benzoxazole-etherimide) Copolymer for Two-Layer Flexible Copper-Clad Laminate. J Macromol Sci B. 2012;51:2157-70.


申请专利:

[1]一种含朝格尔碱基芳香二羧酸及其制备方法:CN202111128010.X[P]. 2021-11-30.

[2]一种二胺单体及其制备方法和应用:CN202110982464.7[P]. 2021-11-23.

[3]一种低介电、低导热苯并环丁烯侧基交联型自具微孔聚酰亚胺薄膜的制备方法:CN202110663689.6[P]. 2021-09-03.

[4]一种含朝格尔碱基聚苯并咪唑及其磷酸掺杂高温质子交换膜的制备方法:CN202110662702.6[P]. 2021-11-02.

[5]一种含朝格尔碱基二酐的制备方法:CN202111006640.X[P]. 2021-11-19.

[6]一种含冠醚共聚型聚酰亚胺及其磷酸掺杂质子交换膜的制备方法:CN202110662705.X[P]. 2021-08-31.

[7]一种燃料电池用耐高温高透气性磺化微孔聚合物及其铂碳复合膜的制备方法:CN202010195095.2[P]. 2020-05-22.

[8]一种半芳香型聚酰亚胺、其制备方法、用途和包含其的气体分离膜:CN201910979710.6[P]. 2019-12-24.

[9]一种耐高温磺化聚苯并噻唑酰亚胺质子交换膜及制备方法:CN201910119096.6[P]. 2019-06-14.

[10]一种含朝格尔碱基二酐的制备方法:CN201611040557.3[P]. 2017-05-31.

[11]聚酰亚胺气体分离膜及其制备方法和应用:CN201610495759.0[P]. 2016-11-23.

[12] 3D打印耗材生产装置:CN201420681950.0[P]. 2015-05-13.

[13]实现连续超声合成MBS的装置:CN201420822512.1[P]. 2015-06-17.

[14]提高MBS性能的合成方法及装置:CN201410808323.3[P]. 2015-04-08.

[15]高性能可生物降解高分子材料及其制备方法:CN201410425213.9[P]. 2014-12-03.

[16]耐热高透明性聚酰亚胺薄膜的制备方法:CN201410024241.X[P]. 2014-04-30.

[17]环氧扩链剂及其制备方法:CN201410425211.X[P]. 2014-11-19.

[18]一种高粘接无胶型挠性覆铜板的制备方法:CN201310071083.9[P]. 2013-05-15.

[19]无卷曲高粘接无胶型挠性覆铜板的制备方法:CN200910167863.7[P]. 2010-04-14.

[20]一种马来酰亚胺封端型聚酰亚胺树脂的制备方法:CN200910148857.7[P]. 2009-12-23.

[21改性马来酰亚胺封端型聚酰亚胺树脂组合物及其应用:CN200710053374.X[P]. 2008-02-13.

[22]聚酰亚胺热固树脂的制备和在二层法挠性覆铜板上的应用:CN200710053151.3[P]. 2008-03-26.