锂离子电池由于其高能量密度、长使用寿命,目前已经成为智能手机和其他设备的主要电池选择。尽管现在锂电池的质量得到了广泛的认可,但在该领域更进一步的研究仍然在持续进行,并不断冲击着研究领域的头条。最新的一项在该领域的研究成果发表在了Materials Today Energy[DOI: 10.1016/ j.mtener.2016.11.002]上。在这篇论文中,作者展示了由超长、电仿BaLi2Ti6O14纳米纤维制成的电池阳极,可以大幅度提高锂离子电池的性能。
大部分的锂离子电池采用石墨作为电池阳极,但在每次充电-放电循环期间形成无定形固体电解质相间层减少了它们的寿命。由锂钛氧化物(Li4Ti5O12)组成的电池阳极提供了更好的充放电循环性能,这是因为它们在这个过程中不会形成无定形层,但是较低的存储密度限制了其存储点电量的能力。为了发明一种既能保证高存储密度,又能提供最佳充放电循环的电极,来自宁波大学的研究团队将研究目光投向了纳米尺度材料。
团队研发的BaLi2Ti6O14纳米纤维是通过经电纺丝合成后退火而成。随后,纤维将与炭黑粉末混合,形成浆状物,在其外部包裹铜箔形成工作电极。在电化学试验中,该电极表现出了很高的电稳定性——充-放电曲线在目前所有电流密度(200、500及1000mAg-1)下从始至终保持平稳。此外,电池的蓄电量随着电流密度的增加,只有非常细微的减少。例如,当电极循环进行1000mAg-1充放电时,其蓄电量在单次循环后只降低0.153%。
作者认为这种现象要归功于由1-D结构组成的纤维带来的电子转移的高效率——这种纳米结构的Li4Ti5O12展示了比普通基体材料更低的欧姆电阻。透射电子显微镜分析结果显示纳米纤维电极显著的保证了结构的稳定性,改变了最低限度超过800次的充放电循环,并且展示了卓越的可逆性。尽管这项研究还处于相对早期的发展阶段,作者相信这项研究表现出来的电化学优异性能,有希望使得纳米纤维材料成为未来商业化的锂离子电池阳极材料。(中国航空工业发展研究中心 陈济桁)
原文链接:http://www.materialstoday.com/energy/news/ultralong-nfs-could-build-better-li-batteries/
- 四川大学王延青 ACS AMI:单分散超长单壁碳纳米管制备高倍率快充锂离子电池:高韧性、无粘结剂、自支撑铌钛氧化物(TiNb2O7)厚电极 2025-08-26
- 东华大学廖耀祖/吕伟课题组 Chem. Sci.:铜介导双极性卟啉基CMP协同优化孔道结构与电化学活性用于高容量快充锂离子电池 2025-05-24
- 四川大学王延青 Carbon:离子掺杂与界面工程协同内外修饰 TiNb2O7 用于高性能锂离子电池 2025-03-21
- 华工方志强/川大王静禹/广工邱学青《ACS Nano》:折纸龙结构启发的高韧性、高延展性纳米纤维素薄膜 2025-08-31
- 北京纳米能源所董凯团队 Adv. Mater.:提高半晶生物聚合物机电转换性能的通用取向工程策略 2025-08-19
- 武汉纺织大学王栋教授团队 Adv. Sci.:具有低反射特性的异质结构多功能纳米纤维复合膜实现高效电磁屏蔽 2025-08-12