相关链接
联系方式
  • 通信地址:北京市海淀区学院路37号
  • 邮编:100191
  • 电话:000000
  • 传真:
  • Email:zhaoyong@buaa.edu.cn
当前位置:> 首页 > 论文著作 > 正文
NPG Asia Materials 2012, 4, doi:10.1038/am.2012.26 "Biaxial stress controlled three-dimensional helical cracks"
作者:Li Wang, Xiang-Ying Ji, Nv Wang, Jing Wu, Hua Dong, Jiexing Du, Yong Zhao*, Xi-Qiao Feng*, Lei Jiang
关键字:Helical cracks, thermal stress
论文来源:期刊
具体来源:NPG Asia Materials 2012, 4, doi:10.1038/am.2012.26
发表时间:2012年

Cracks are Janus-faced, which cause material failure on one hand and serve as a powerful approach for material processing on the other. To predict cracks and control them in a desired manner, foundational fracture mechanisms are continuously being pursued, based on simplified modes of planar cracks. In reality, cracks usually occur in a three-dimensional (3D) irregular manner. Prediction of 3D fractures is of particular significance for understanding the fundamental fracture mechanisms. However, controlling cracks in typical 3D modes is rare. Here we report that controllable 3D helical cracks on heterogeneous spindle knots are induced by biaxial thermal stresses. The thermal expansion mismatch between the tough core and brittle shell during the heating process generates biaxial stresses in the axial and circumferential directions. Surface cleavage and interface delamination driven by the release rate of elastic strain energy are harmonized due to the unique spindle geometry and cooperate to produce a 3D helical crack. This finding is helpful for understanding complex cracking mechanisms and provides a promising prospect for controlling or eliminating 3D cracks.