再来看看红细胞的生命周期。一个红血球的生命周期大概在两到三个月。红细胞膜表面上,大概有百分之六十是磷脂分子,百分之四十是胆固醇-胆固醇不是坏东西,是必须要有的。胆固醇比较刚性,膜上掺入有胆固醇后,它的弹性就相对比较好一点。但是胆固醇自身是不能形成囊泡的,胆固醇只有和卵磷脂在一起才能形成一个比较完整的红血球。有一种观点认为,在红细胞生命周期的晚期,卵磷脂和胆固醇会发生相分离。相分离形成的卵磷脂相因其十分柔软而会发生出芽(Budding)并进入血浆中。于是,卵磷脂不断流失之后,膜上剩下的越来越多的是胆固醇,因胆固醇不能形成囊泡而导致红血球的散架,胆固醇游离进入血浆中,并可能会在血管壁上富集。如果这个看法是正确的,那么用一定的方式补充卵磷脂,对防治冠心病等心血管疾病应该是有效的。事实上,对由卵磷脂和胆固醇制成的人工囊泡的实验发现,膜上的卵磷脂和胆固醇的相分离确实会导致出芽现象。我们采用统计力学方法计算了囊泡膜上的相分离,相分离诱导出芽的现象得到确证。因此,我们可以说生命过程同样必须严格遵守物理学的定律。基因只是通过物理学等基础科学的基本定律在发挥作用。
细胞膜还有更为复杂的胞吞和胞吐现象。胞吞是细胞内的囊泡与细胞膜融合将小囊泡里的东西释放到细胞外,但是内囊泡的膜与细胞膜融合。胞吞则是胞吐的反过程。但是,细胞是采用什么机制来实现胞吞和胞吐过程的呢?有一个实验很简单也很有意思,即在囊泡外膜上吸附少量的高分子,如PEG,则会看到囊泡会发生形状的转变,管状囊泡会变成一串球、而其它形状的囊泡则会出现出芽、胞吞和胞吐的形状转变。这样的现象在生物学上有重要的意义。这种现象广泛地存在于高尔基体和内质网的蛋白质分选和内分泌过程中。我们将吸附有高分子链的囊泡作为模型,并采用统计力学方法计算了囊泡的形状转变。计算结果告诉我们,囊泡膜的内或外表面吸附了高分子后会转变为丰富的形状。这种形状与细胞中的高尔基体、内质网和线粒体等细胞器的形状有着十分密切的关系。囊泡为诸多细胞生命过程提供了十分有意义的模型。在这里,基因也没有直接出现,而是物理学的基本规律在起作用。
- 复旦大学教授杨玉良院士:古籍保护须解“卡脑子”问题 2019-10-24
- 杨玉良院士、史安昌教授、王振纲教授做客中科院应化所“应用化学系列讲座” 2016-05-03
- 杨玉良卸任复旦校长投身古籍保护 系高分子化学物理博士 2014-11-07
- 南华大学魏华/喻翠云/张海涛团队 CRPS:环刷拓扑结构球形核酸通过中性粒细胞极化增强肝细胞癌基因-免疫治疗 2025-05-04
- 纽约州立大学宾汉姆顿分校饶思圆课题组诚招博士、硕士研究生 - 化学、材料学、生物工程、电子工程、神经科学、基因工程 2025-04-11
- 中山大学肿瘤医院杨江教授 JCR:可吸入式pH响应型电荷反转聚合物-siRNA复合物用于ALK融合阳性肺癌靶向基因治疗 2025-03-31