水资源短缺已经成为现代人类面临的最具挑战性的困难之一,据世界气象组织发布的最新报告,在过去的20年,地球的地下水水面以每年1厘米的速度下降,如果一直持续下去,预计到2050年,全球缺水的人数预计将达到50亿,这将对全球水安全造成重大影响,因此,针对这一严重问题,人们采取了一些有效的方法最大限度地利用地球上的淡水资源,例如海水淡化、污水处理、大气集水等。相关研究表明,大气水含量非常丰富,约占世界湖水的10%。因此,大气水收集技术受到研究人员的广泛关注,成为捕获淡水的有效方法之一。
近日,天津工业大学纺织科学与工程学院张松楠副研究员,以开孔的聚丙烯酸钠水凝胶(PAAS)为壳层,以温敏性的大孔径聚N-异丙基丙烯酰胺水凝胶(PNIPAAm)为核层,以聚多巴胺纳米粒子(PDA)为光热转化材料,开发了一种兼具高效吸湿性能及快速释水性能的光响应核壳PAAS-PNIPAAm水凝胶,有效地提高了水凝胶的大气水收集性能。该研究成果以“Sustainable hierarchical-pored PAAS-PNIPAAm hydrogel with core-shell structure tailored for highly efficient atmospheric water harvesting” 为题发表在《ACS Applied Materials & Interfaces》上(见文后原文链接)。
图1. a) 核壳水凝胶的制备流程。b-f) 核壳水凝胶的SEM图: b) PAAS水凝胶;c) PNIPAAm水凝胶;d) 核层和壳层之间连接处;e) 水凝胶表面粗糙度图像,Ra: 11.19 μm;f) 聚多巴胺颗粒。g) 水凝胶的EDS能谱图。
图2. a) 水凝胶的吸收光谱。b) 湿态水凝胶在1个太阳光强度照射下的温度变化图。c) 不同PDA 浓度处理的水凝胶的表面温度的变化图。d) 干态水凝胶在1个太阳光强度照射下的温度变化图。e) 水凝胶在1个阳光下的红外热成像图。f) 水凝胶在不同光强下的温度变化曲线。
图4. a) 水蒸发测试装置。b) 水收集器内壁上水滴形成的照片。c)不同核壳比例的水凝胶在1个太阳照射下的释水性能。d) 水凝胶在不同光照强度下的释水性能。e) 聚多巴胺改性前后水凝胶的释水性能。
原文链接:https://doi.org/10.1021/acsami.2c19840
个人主页:https://www.x-mol.com/groups/zhangsongnan
- 中科院理化所王树涛/张飞龙团队《Adv. Mater.》:在凝胶形状转变的调控研究方面取得新进展 2026-01-30
- 陕科大王学川/党旭岗、温州医科大郑漫辉 AFM:可注射自修复生物质基水凝胶生物粘合剂用于伤口愈合和可穿戴生物电子一体化 2026-01-30
- 浙大杨栩旭研究员、李铁风教授/复旦梅时良研究员 AFM:喷涂实现的多功能水凝胶适形皮肤 2026-01-28
- 燕山大学张强团队 AFM:仿生筋膜核壳纳米纤维水凝胶 2026-01-22
- 武大蔡韬课题组 Macromolecules:光/磁协同调控-核壳结构Fe3O4@共轭微孔聚合物催化双门控ATRP及酶偶联应用 2025-04-25
- 郑大刘春太/刘虎团队 Sci. Bull.:具有双效热管理和阻燃性的核壳结构BN/SiO2纳米纤维太空冷却膜 2025-01-10
- 阿尔托大学Olli Ikkala教授、张航博士《Adv. Funct. Mater.》:可高效切换水下黏附水凝胶 2023-02-28